
A Simple Statistical Cache Sharing Model for Multicores

Andreas Sandberg
Department of Information

Technology

Uppsala University, Sweden

andreas.sandberg@it.uu.se

David Black-Schaffer
Department of Information

Technology

Uppsala University, Sweden

david.black-
schaffer@it.uu.se

Erik Hagersten
Department of Information

Technology

Uppsala University, Sweden

eh@it.uu.se

ABSTRACT
The introduction of multicores has made analysis of shared re-
sources, such as shared caches and shared DRAM bandwidth, an
important topic to study. We present two simple, but accurate,
cache sharing models that use high-level data that can easily be
measured on existing systems. We evaluate our model using a sim-
ulated multicore processor with four cores and a shared L2 cache.
Our evaluation shows that we can predict average sharing in groups
of four benchmarks with an average error smaller than 0.79% for
random caches and 1.34% for LRU caches.

1. INTRODUCTION
A typical modern multicore processor has a big shared last level
cache (SLLC) and relatively small private caches. For example, the
Intel Nehalem microarchitecture only has 288 kB (L1+L2) private
cache per core, the rest of the cache is in the form of a large shared
L3 cache. Since most of the cache available to an application ex-
ecuting on modern processors is shared, analyzing the behavior of
this resource is crucial to understanding application performance.

Modeling of caches in single-processor systems has been exten-
sively studied [10, 9, 1, 7]. Recent studies focus more on distributed
caches in classical multiprocessor systems [2] and shared caches in
multicore systems [4, 5, 6, 11]. Many of the cache sharing models
previously require a very detailed description of an application’s
memory access behavior, e.g. a stack distance trace. Measuring
a stack distance trace is generally prohibitively expensive, usually
even more expensive than a full address trace.

Our goal is to build a practical cache sharing model that predicts
the amount of cache allocated to each process running on a sys-
tem with a shared cache. Using this information we can predict
other performance metrics, such as how often the application will
miss in the shared cache. We want to be able to apply this model
to real systems with little overhead. This requires us to use high
level data that can easily be measured with low overhead, such as
that produced using Cache Pirating [8]. Cache Pirating allows us
to measure any metric that is exposed by the underlying hardware’s
performance counters as a function of cache size. Eklöv et al. have
shown that Cache Pirating can be used to produce application pro-
files with only 5.5% runtime overhead.

We envision several usage areas for our model. For example, imag-
ine a heterogeneous system with a couple of fat cores with private
caches and several small cores that share a cache. When starting a
mix of applications on such a system, a cache sharing model could
be used to predict which thread placements would be most efficient
with respect to metrics such as off-chip bandwidth requirements.

Of course, deciding which thread placement to use is likely to also
depend on other parameters, such as available execution resources.

Our contributions are:

We have developed a statistical cache sharing model for ran-
dom caches. To the best of our knowledge, no such model
has been previously documented.

We have extended that model to LRU caches. Our extended
model only requires high level data that can be easily mea-
sured.

2. MODELING CACHE SHARING
Two threads sharing a cache can intuitively be thought of as two
flows of liquid filling an overflowing bucket. The flows filling the
bucket correspond to fetches into the cache and the water pouring
out of the bucket is the replacement stream from the cache. As-
suming that the inflows are constant, the overflowing bucket will
eventually reach a steady state where the concentrations of the liq-
uids in the bucket will be proportional to their relative inflow rates.
In fact, this very simple model works surprisingly well for random
caches.

Applications transition between stable behaviors, also known as
phases, in which the inflow of data into the cache is relatively con-
stant. When two applications execute in such stable regions, they
will quickly reach a steady state where their cache shares do not
change.

An important property at steady state is that whenever new data is
fetched into the cache something else has to be replaced. We de-
fine fetch rate as the number of fetches from memory that allocate
data in the SLLC per cycle. Note that an application’s fetch rate
normally depends on the amount of cache it has access to. We will
assume that we are at steady state and that each fetch corresponds
to a replacement.

2.1 Modeling random caches
In random caches, sharing only depends on two events, fetches into
the cache and replacements. At steady state, each fetch will cause a
replacement. Upon a replacement, a random cache line is selected
for replacement. That means that the likelihood that a cache line
belonging to a specific thread is replaced is proportional to its cache
share. Intuitively, a thread, , gets a fraction of the cache (c

C)
proportional to its fraction of the total fetch rate (f

F):

c
C = f

F (1)

The thread increases its cache share for every fetch it makes and
decreases it whenever one of its lines is replaced by another thread.
We call the probability that a cache line is evicted from a specific
thread’s allocation Prepl. Fetches and replacements have to be bal-
anced at steady state, which leads to the following equation:

f = F Prepl (2)

The probability that a specific cache line will be evicted from a
thread’s allocation is a property of the replacement policy. In the
case of a random cache, the likelihood of replacing something in a
thread’s allocation is proportional to the size of that thread’s cache
share. For example, if a thread owns 4 out of 16 lines in the cache,
the probability of replacing a cache line belonging to that thread is
4

16 . In general:

Prepl = c
C (3)

Inserting Equation 3 into Equation 2 yields Equation 1 above. To-
gether with the requirement that the sum of all cache fractions equal
the total shared cache size, we get an equation system that we can
solve. In the simple case of two threads the equation system looks
like:

⇢ c0
c0+c1

= f0
f0+f1

c0 + c1 = C (4)

The equation system above assumes that both threads actually com-
pete for the shared cache. If all of the threads in the system have
a working set size that is smaller than the total cache size, the sys-
tem breaks down. We handle this case using a fallback mecha-
nism when the fetch rates are low. In this case, we determine each
threads cache allocation by finding the cache size where its fetch
rate falls below a small threshold.

2.2 Modeling LRU caches
Unlike in the random replacement policy, the LRU policy depends
on access history. A cache line is less likely to be replaced if it has
been accessed recently. We consider an element to be a candidate
for replacement if it has not been accessed recently. Intuitively, the
higher the access rate, i.e. accesses per cycle, to a cache line, the
less likely it is to be replaced. If we know the access rate per cache
line, â, we could model this behavior using:1

Pcand = 1 âP
â (5)

Unfortunately, there is no efficient way to measure the access rate
per cache line. Instead we approximate it using the average access
rate, a , and cache size for a given thread. That is:

â a
c (6)

Using Equation 5 and Equation 6 above we can estimate the ex-
pected number of replacement candidates for a thread:

Ecand = c c
a
cP a

c
(7)

1Assuming that accesses are exponentially distributed, this is the
probability that the next cache line to be accessed is not from thread

.

Cache line size 64 B
L1 latency 3 cycles
L1 associativity 16
L1 size 64 kB
L2 latency 30 cycles
L2 associativity 16
L2 size 8 MB
Memory latency 200 cycles

Table 1: M5 Simulator parameters

We assume that all of the potential replacement candidates are equally
likely for replacement. This is effectively the same as doing ran-
dom replacement on a subset of the cache. Therefore, if we substi-
tute the cache fractions with the expected number of replacement
candidates, we can simply use Equation 3. This leads to the follow-
ing equation for LRU caches:

Prepl = Ecand
P

Ecand (8)

To find the cache shares, we solve the same equation system as in
random replacement, but use the replacement probability for LRU
instead of random.

3. MODEL EVALUATION
To evaluate the quality of the model for both 2 and 4 threads, we
simulated a simple in-order processor with four cores using M5 [3]
with the parameters in Table 1. We used the classical M5 memory
system, which implements a snooping MOESI protocol, i.e. all L1
caches are connected to a shared bus linking them to the L2 cache,
and does not enforce inclusion between cache levels. We measured
fetch rates and access rates as a function of cache size by changing
the L2 cache size in steps of 512 kB up to 8 MB.2 We used lin-
ear interpolation of the measured values when solving the equation
systems in the model. All the benchmarks were allowed to execute
for 2 billion instructions.

Since our analysis assumes steady state, we sliced the execution
into small windows. The benchmarks executed for 200 million cy-
cles in each window. To avoid having to deal with window align-
ment, we used alignment information from the reference runs when
running the model.

We selected benchmarks from SPEC2006 based on their fetch rate
behavior in the SLLC. We generally wanted to analyze applications
with a high fetch rate or a fetch rate that changes significantly when
the amount of cache allocated in the SLLC is restricted. These are
generally the applications that are affected by SLLC contention and
are both harder to analyze and more interesting.

In addition to the SPEC benchmarks, we included two classes of
microbenchmarks, their fetch rate behavior is shown in Figure 1.
The first class, block, accesses its data set sequentially over and
over again. As seen in Figure 1a, this access behavior causes the
fetch rate curve to drop sharply for LRU caches when the cache
size is larger than the data set size. In random caches, the fetch rate
gradually decreases as the cache size approaches the data set size.

2On a real system, the same data would have been provided mea-
sured using Cache Pirating

0.0e+00
5.0e-04
1.0e-03
1.5e-03
2.0e-03
2.5e-03
3.0e-03
3.5e-03
4.0e-03

1MB
2MB

3MB
4MB

5MB
6MB

7MB
8MB

Fe
tc

he
s

R
at

e

Cache size

Random
LRU

(a) Block, 5 MB data set

0.0e+00
5.0e-04
1.0e-03
1.5e-03
2.0e-03
2.5e-03
3.0e-03
3.5e-03

1MB
2MB

3MB
4MB

5MB
6MB

7MB
8MB

Fe
tc

he
s

R
at

e

Cache size

Random
LRU

(b) Random, 5 MB data set

Figure 1: SLLC behavior of the block_5M and random_5M mi-
crobenchmarks. The block microbenchmark accesses a 5 MB
array sequentially, while the random microbenchmark accesses
the array randomly.

The random microbenchmark class accesses its data set randomly.
As seen in Figure 1a, this causes the fetch rate to decrease with
cache size. An interesting observation is that both replacement
policies behave the same in this case. Since the access pattern is
completely random, all cache lines are equally likely to be reused
next, which effectively makes this microbenchmark behave the same
under any replacement policy.

We exhaustively ran all pairs of the following benchmarks from
SPEC2006: hmmer, lbm, leslie3d, libquantum, mcf, soplex, sphinx3,

zeusmp; and the following microbenchmarks: block (1 MB, 3 MB,

5 MB, 7 MB), random (3 MB, 5 MB, 7 MB). Since the simulation
time needed to simulate all possible combinations of four appli-
cations would be prohibitive, we limited our study to the groups
shown in Table 2.

3.1 Random replacement
Figure 2 shows a scatter plot with predicted cache sizes and simu-
lated cache sizes. The better a prediction is, the closer it is to the
diagonal. The error when executing pairs of applications was gen-
erally very low, the average error as a fraction of cache size was
0.98% for pair runs and 0.79% for groups of four application.

3.2 LRU replacement
As seen in Figure 2, the prediction error for LRU caches was gen-
erally low. The average error was 2.92% for pairs and 1.34% for
groups of four applications. The error was slightly higher for the
LRU model than for the random model. In particular, the block_5M
microbenchmark was troublesome (two benchmark pairs involving
this microbenchmark are highlighted in Figure 2c). It turns out that
some pairs involving this benchmark have multiple possible ways
of sharing cache.

Some benchmarks, particularly benchmarks with sharp knees in
their fetch rate curves, have a tendency to have multiple stable
cache sharing behaviors. For example, consider our block_5M mi-
crobenchmark running together with another application. When the
microbenchmark has access to less than 5 MB of cache, it misses
on every single memory access. This causes it to run significantly
slower than it would have if its data set had been in the cache. One
could imagine a setup where our microbenchmark gets different
amounts of cache depending on if it is allowed to warm its part of
the cache before the second application is allowed to start. In such
a setup, we would have two steady state solutions.

Looking at Figure 2c we immediately see two outliers, both involv-
ing the block_5M microbenchmark. Both of these outliers are in
fact correct solutions that the simulator finds if we offset the ap-
plications slightly. Figure 3 shows the left and right hand side of
the equation describing how block_5M shares cache with LBM and
random_7M, three different solutions are clearly visible. Note that
the unnaturally sharp step is the miss rate curve is an artifact of the
microbenchmark and not likely to occur in real-world applications.

Another potential error source is sparse, interpolated, data. Look-
ing at Figure 1a we see that the fetch rate curve for an LRU cache,
has a sharp knee right at the data size. This makes it very sensitive
to changes in cache size when the size is in the range of its data set
size. Since our measurements of f and a are relative coarse (steps
of 512 kB), interpolation may introduce some undesired behavior.

4. RELATED WORK
Several researchers have tried to predict how applications share
cache. Chandra et al. [4] proposed a statistical cache sharing model
that is based on stack distance traces (with some additional in-
formation) of the target applications. Their model predicts num-
ber of unique memory accesses performed by a thread in an inter-
val of a given length. This information is used to prolong local
stack distances with the accesses performed by the remote threads.
Chandra’s model assumes that all applications execute with the
same CPI independent of cache size. This was later improved by
Chen et al. [5], who first run the applications with an initial CPI
guess and then rerun the model with the new CPI guess to yield
the final cache size. Unfortunately, both of these models depend on
stack distances, which make them hard to apply to practical prob-
lems. One could argue that the stack distances could be estimated
by StatStack [7], however, both models require additional informa-
tion3 that StatStack can not predict.

Eklöv et al. [6] later proposed STATCC, which uses a combination
of StatStack and a first order CPI model to merge reuse distance
histograms and predict the behavior of the application mix. The
input data to their model is a sparse memory access sample, iden-
tical to the data used by StatStack. Using a reuse distance sample
makes their model practical since the reuse distance sample can be
acquired with relatively low overhead (the authors claim 40% run-
time overhead) and is mostly platform independent. However, their
method requires a CPI model of the target system. Our approach
does not rely on such a model, instead we measure how cache size
affects CPI.

3Chandra’s model uses different stack distance distributions for
each reuse distance, while StatStack simply assumes every reuse
distance to correspond to exactly one stack distance.

1 MB

2 MB

3 MB

4 MB

5 MB

6 MB

7 MB

8 MB

1MB
2MB

3MB
4MB

5MB
6MB

7MB
8MB

M
od

el

Simulator

5% Error 10% Error

(a) Pairs (Random)

1 MB

2 MB

3 MB

4 MB

5 MB

6 MB

7 MB

8 MB

1MB
2MB

3MB
4MB

5MB
6MB

7MB
8MB

M
od

el

Simulator

5% Error 10% Error

(b) Groups of four (Random)

1 MB

2 MB

3 MB

4 MB

5 MB

6 MB

7 MB

8 MB

1MB
2MB

3MB
4MB

5MB
6MB

7MB
8MB

M
od

el

Simulator

5% Error
10% Error

block_5M/lbm
block_5M/rnd_7M

(c) Pairs (LRU)

1 MB

2 MB

3 MB

4 MB

5 MB

6 MB

7 MB

8 MB

1MB
2MB

3MB
4MB

5MB
6MB

7MB
8MB

M
od

el

Simulator

5% Error 10% Error

(d) Groups of four (LRU)

Figure 2: Scatter plots showing predicted and simulated cache size for benchmarks when running in groups of two (a, c) and groups
of four (b, d) with random replacement (a, b) and LRU (c, d). The two outliers when modeling pairs of benchmarks with LRU
replacement are a result of the simulator choosing between multiple stable behaviors and settling for a different cache sharing than
the model.

1MB
2MB

3MB
4MB

5MB
6MB

7MB
8MB

Cache Size (LBM)

Simulator solution Model solution

LHS
RHS

(a) block_5M & LBM

1MB
2MB

3MB
4MB

5MB
6MB

7MB
8MB

Cache Size (random_7M)

Model solution

Simulator solutionLHS
RHS

(b) block_5M & random_7M

Figure 3: Right-hand side and left-hand side of the LRU model equation describing sharing between two different benchmark pairs.
Three solutions are clearly visible, two around 3 MB and one at 4.5 MB. The solver in our model implementation found the solution
at 4.5 MB, while the simulator found the solution at 3 MB.

Mix App 0 App 1 App 2 App 3
quad0 block_1M block_1M block_1M random_7M
quad1 bzip2 bwaves astar hmmer
quad2 bzip2 leslie3d milc mcf
quad3 gamess bwaves mcf libquantum
quad4 lbm libquantum leslie3d zeusmp
quad5 lbm soplex zeusmp leslie3d
quad6 libquantum soplex zeusmp leslie3d
quad7 random_3M random_3M random_3M random_3M
quad8 random_5M random_5M random_3M random_3M
quad9 sphinx3 mcf bzip2 astar
quad10 sphinx3 soplex mcf gamess
quad11 zeusmp bwaves mcf gamess

Table 2: Mixes of four applications

5. FUTURE WORK
We are currently working on adapting the system for use on real
hardware using Cache Pirating data. We plan to extend these stud-
ies to evaluate how bandwidth usage is affected by cache sharing
and how cache sharing is affected by limited bandwidth.

As shown in this paper, applications sharing a cache may have mul-
tiple stable working points. We did not analyze the stability of those
points, we just showed their existence. It is not unreasonable to as-
sume that all stable solutions are as likely to appear, in fact, some
are probably more likely than others. Such a quality measure will
most likely be important when moving to real hardware since ran-
dom noise, such as interrupts and preemptions, is likely to push the
system away from the less stable solutions.

Another exciting future direction is to analyze the time dependent
behavior of cache sharing. Initial time dependent analysis of our
simulation data suggests that an application’s cache share changes
significantly over time. We will likely need phase information, or
similar, to enable more efficient study of different interleavings.

6. ACKNOWLEDGMENTS
The simulations were performed on resources provided by the Swedish
National Infrastructure for Computing (SNIC) at Uppsala Multi-
disciplinary Center for Advanced Computational Science (UPP-
MAX). This work was financed by the CoDeR-MP project and UP-
MARC research center.

7. REFERENCES
[1] E. Berg and E. Hagersten. StatCache: A Probabilistic

Approach to Efficient and Accurate Data Locality Analysis.
In Performance Analysis of Systems and Software, 2004

IEEE International Symposium on - ISPASS, pages 20–27,
2004.

[2] E. Berg, H. Zeffer, and E. Hagersten. A Statistical
Multiprocessor Cache Model. In Performance Analysis of

Systems and Software, 2006 IEEE International Symposium

on, pages 89–99, 2006.
[3] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G.

Saidi, and S. K. Reinhardt. The M5 Simulator: Modeling
Networked Systems,. IEEE Micro, 26(4):52–60, Aug. 2006.

[4] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting
inter-thread cache contention on a chip multi-processor
architecture. In High-Performance Computer Architecture,

2005. HPCA-11. 11th International Symposium on, pages
340–351, 2005.

[5] X. E. Chen and T. M. Aamodt. A first-order fine-grained
multithreaded throughput model. In 2009 IEEE 15th

International Symposium on High Performance Computer

Architecture, pages 329–340, Raleigh, NC, USA, 2009.
[6] D. Eklöv, D. Black-Schaffer, and E. Hagersten. Fast

Modeling of Cache Contention in Multicore Systems. In In

Proceedings of the the 6th International Conference on High

Performance and Embedded Architecture and Compilation

(HiPEAC), January 2011.
[7] D. Eklöv and E. Hagersten. StatStack: Efficient Modeling of

LRU Caches. In Proceedings of the 2010 IEEE International

Symposium on Performance Analysis of Systems and

Software (ISPASS-2010), New York, New York, USA, Mar.
2010.

[8] D. Eklöv, N. Nikoleris, D. Black-Schaffer, and E. Hagersten.
Cache Pirating: Measuring the Curse of the Shared Cache. In
Parallel Processing (ICPP), 2011 40th International

Conference on, Sept. 2011.
[9] J. P. Singh, H. S. Stone, and D. F. Thiebaut. A model of

workloads and its use in Miss-Rate prediction for fully
associative caches. IEEE Transactions on Computers,
41(7):811–825, July 1992.

[10] D. Thiebaut and H. S. Stone. Footprints in the cache. ACM

Transactions on Compututer Systsems, 5(4):305–329, Oct.
1987.

[11] X. Xiang, B. Bao, T. Bai, C. Ding, and T. Chilimbi.
All-window profiling and composable models of cache
sharing. In Proceedings of the 16th ACM Symposium on

Principles and Practice of Parallel Programming, PPoPP
’11, pages 91–102, New York, NY, USA, 2011. ACM.

	Introduction
	Modeling cache sharing
	Modeling random caches
	Modeling LRU caches

	Model evaluation
	Random replacement
	LRU replacement

	Related work
	Future work
	Acknowledgments
	References

