
ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2014

Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1136

Understanding Multicore
Performance

ANDREAS SANDBERG

ISSN 1651-6214
ISBN 978-91-554-8922-9
urn:nbn:se:uu:diva-220652

Efficient Memory System Modeling and Simulation

Dissertation presented at Uppsala University to be publicly examined in ITC/2446,
Informationsteknologiskt Centrum, Lägerhyddsvägen 2, Uppsala, Thursday, 22 May
2014 at 09:30 for the degree of Doctor of Philosophy. The examination will be
conducted in English. Faculty examiner: Professor David A. Wood (Department of
Computer Sciences, University of Wisconsin-Madison).

Abstract

Sandberg, A. 2014. Understanding Multicore Performance: Efficient Memory System
Modeling and Simulation. Digital Comprehensive Summaries of Uppsala Dissertations from
the Faculty of Science and Technology 1136. i–x, 54 pp. Uppsala: Acta Universitatis
Upsaliensis. ISBN 978-91-554-8922-9.

To increase performance, modern processors employ complex techniques such as out-of-
order pipelines and deep cache hierarchies. While the increasing complexity has paid off in
performance, it has become harder to accurately predict the effects of hardware/software
optimizations in such systems. Traditional microarchitectural simulators typically execute
code 10000×–100000× slower than native execution, which leads to three problems:
First, high simulation overhead makes it hard to use microarchitectural simulators for
tasks such as software optimizations where rapid turn-around is required. Second, when
multiple cores share the memory system, the resulting performance is sensitive to how
memory accesses from the different cores interleave. This requires that applications
are simulated multiple times with different interleaving to estimate their performance
distribution, which is rarely feasible with today’s simulators. Third, the high overhead
limits the size of the applications that can be studied. This is usually solved by only
simulating a relatively small number of instructions near the start of an application, with
the risk of reporting unrepresentative results.

In this thesis we demonstrate three strategies to accurately model multicore processors
without the overhead of traditional simulation. First, we show how microarchitecture-
independent memory access profiles can be used to drive automatic cache optimizations
and to qualitatively classify an application’s last-level cache behavior. Second, we demon-
strate how high-level performance profiles, that can be measured on existing hardware,
can be used to model the behavior of a shared cache. Unlike previous models, we predict
the effective amount of cache available to each application and the resulting performance
distribution due to different interleaving without requiring a processor model. Third,
in order to model future systems, we build an efficient sampling simulator. By using
native execution to fast-forward between samples, we reach new samples much faster
than a single sample can be simulated. This enables us to simulate multiple samples in
parallel, resulting in almost linear scalability and a maximum simulation rate close to
native execution.

Keywords: Computer Architecture, Simulation, Modeling, Sampling, Caches, Memory
Systems, gem5, Parallel Simulation, Virtualization, Sampling, Multicore

Andreas Sandberg, Department of Information Technology, Division of Computer Systems,
Box 337, Uppsala University, SE-75105 Uppsala, Sweden.

© Andreas Sandberg 2014

ISSN 1651-6214
ISBN 978-91-554-8922-9
urn:se:uu:diva-220652 (http://urn.kb.se/resolve?urn=urn:se:uu:diva-220652)

http://urn.kb.se/resolve?urn=urn:se:uu:diva-220652
http://urn.kb.se/resolve?urn=urn:se:uu:diva-220652

To my parents

List of Papers

This thesis is based on the following papers, which are referred to in the
text by their Roman numerals:

I. Andreas Sandberg, David Eklöv, and Erik Hagersten. “Reduc-
ing Cache Pollution Through Detection and Elimination of Non-
Temporal Memory Accesses”. In: Proc. High Performance Comput-
ing, Networking, Storage and Analysis (SC). 2010. DOI: 10.1109/
SC.2010.44
I’m the primary author of this paper. David Eklöv contributed to dis-
cussions and ran initial simulations.

II. Andreas Sandberg, David Black-Schaffer, and Erik Hagersten. “Ef-
ficient Techniques for Predicting Cache Sharing and Throughput”.
In: Proc. International Conference on Parallel Architectures and Com-
pilation Techniques (PACT). 2012, pp. 305–314. DOI: 10.1145/
2370816.2370861
I’m the primary author of this paper.

III. Andreas Sandberg, Andreas Sembrant, David Black-Schaffer, and
Erik Hagersten. “Modeling Performance Variation Due to Cache
Sharing”. In: Proc. International Symposium on High-Performance
Computer Architecture (HPCA). 2013, pp. 155–166. DOI: 10 .
1109/HPCA.2013.6522315
I designed and implemented the cache sharing model. Andreas
Sembrant contributed to discussions, and provided phase detection soft-
ware and reference data.

IV. Andreas Sandberg, Erik Hagersten, and David Black-Schaffer. Full
Speed Ahead: Detailed Architectural Simulation at Near-Native
Speed. Tech. rep. 2014-005. Department of Information Technol-
ogy, Uppsala University, Mar. 2014

I’m the primary author of this paper.

Reprints weremade with permission from the publishers. The papers
have all been reformatted to fit the single-column format of this thesis.

v

http://dx.doi.org/10.1109/SC.2010.44
http://dx.doi.org/10.1109/SC.2010.44
http://dx.doi.org/10.1145/2370816.2370861
http://dx.doi.org/10.1145/2370816.2370861
http://dx.doi.org/10.1109/HPCA.2013.6522315
http://dx.doi.org/10.1109/HPCA.2013.6522315

Other publications not included:

• Andreas Sandberg and Stefanos Kaxiras. “Efficient Detection of
Communication in Multi-Cores”. In: Proc. Swedish Workshop on
Multi-Core Computing (MCC). 2009, pp. 119–121

I’m the primary author of this paper.

• Andreas Sandberg, David Eklöv, and Erik Hagersten. “A Software
Technique for Reducing Cache Pollution”. In: Proc. Swedish Work-
shop on Multi-Core Computing (MCC). 2010, pp. 59–62

I’m the primary author of this paper.

• Andreas Sandberg, David Black-Schaffer, and Erik Hagersten. “A
Simple Statistical Cache Sharing Model for Multicores”. In: Proc.
Swedish Workshop on Multi-Core Computing (MCC). 2011, pp. 31–
36

I’m the primary author of this paper.

• Muneeb Khan, Andreas Sandberg, and Erik Hagersten. “A Case
for Resource Efficient Prefetching in Multicores”. In: Proc. Inter-
national Symposium on Performance Analysis of Systems & Software
(ISPASS). 2014, pp. 137–138

I was involved in discussions throughout the project and wrote some of
the software.

vi

Contents

1 Introduction 1

2 Cache Bypass Modeling for Automatic Optimizations 5
2.1 Efficient Cache Modeling 7
2.2 Classifying Cache Behavior 8
2.3 Optimizing Memory Accesses Causing Cache Pollution 10
2.4 Effects on Benchmark Classification 12
2.5 Summary . 13

3 Modeling Cache Sharing 15
3.1 Measuring Cache-Dependent Behavior 16
3.2 Modeling Cache Sharing 18
3.3 Modeling LRU Replacement 19
3.4 Modeling Time . 21
3.5 Summary . 25

4 Efficient Simulation Techniques 27
4.1 Integrating Simulation and Hardware Virtualization . . 29
4.2 Hardware-Accelerated Sampling Simulation 30
4.3 Exploiting Sample-Level Parallelism 32
4.4 Estimating Warming Errors 33
4.5 Summary . 34

5 Ongoing & Future Work 35
5.1 Multicore System Simulation 35
5.2 Efficient Cache Warming 37

6 Summary 39

7 Svensk sammanfattning 41
7.1 Bakgrund . 41
7.2 Sammanfattning av forskningen 43

8 Acknowledgments 47

9 References 49

vii

Papers

I Reducing Cache Pollution Through Detection and
Elimination of Non-Temporal Memory Accesses 57
1 Introduction . 58
2 Managing caches in software 60
3 Cache management instructions 64
4 Low-overhead cache modeling 65
5 Identifying non-temporal accesses 67
6 Evaluation methodology 70
7 Results and analysis . 74
8 Related work . 78
9 Summary and future work 80

II Efficient Techniques for Predicting Cache Sharing and
Throughput 85
1 Introduction . 86
2 Modeling Cache Sharing 87
3 Evaluation (Simulator) 98
4 Evaluation (Hardware) 104
5 Related Work . 107
6 Future Work . 108

III Modeling Performance Variation Due to Cache Sharing in
Multicore Systems 113
1 Introduction . 114
2 Putting it Together . 116
3 Time Dependent Cache Sharing 119
4 Evaluation . 122
5 Case Study – Modeling Multi-Cores 134
6 Related Work . 136
7 Conclusions . 137

IV Full Speed Ahead:
Detailed Architectural Simulation at Near-Native Speed 143
1 Introduction . 144
2 Overview of FSA Sampling 147
3 Background . 150
4 Implementation . 151
5 Evaluation . 156
6 Related Work . 166
7 Future Work . 169
8 Summary . 169

viii

List of Abbreviations

CMP chip multiprocessor

CPI cycles per instruction

CPU central processing unit

DRAM dynamic random-access memory

ETM evict to memory

FIFO first-in first-out

FSA full speed ahead

GIPS giga instructions per cycle

IPC instructions per cycle

KVM kernel virtual machine

L1 level one cache

L2 level two cache

L3 level three cache

LLC last-level cache

LRU least recently used

MIPS mega instructions per cycle

MRU most recently used

OoO out of order

pFSA parallel full speed ahead

POI point of interest

SLLC shared last-level cache

SMARTS sampling microarchitecture simulation

ix

1 Introduction

The performance of a computer system is decided by three factors: how
fast instructions can be executed, how fast instructions can be delivered
to the processor, and how fast data can be delivered to the processor.
Due to advances in manufacturing technologies (smaller and faster tran-
sistors) and advances in computer architecture (e.g., pipelining, multiple
instruction issue, and out-of-order execution), it is generally possible to
execute instructions much faster than data and instructions can be deliv-
ered frommemory. In order to solve the issue of slowmemory, architects
have resorted to using hierarchies of fast, but small, cache memories to
hide the latency of main memory (DRAM) accesses.

In the late 90s, it was clear that optimizations exploiting instruction-
level parallelism, such as out-of-order execution, were not going to con-
tinue to provide performance improvements. Instead, researchers started
to look into the possibility of putting multiple execution cores on the
same processor chip, forming a chip multiprocessor or multicore proces-
sor. This meant that the previously exclusive cache hierarchy, and often
exclusive memory controller, became shared between all cores executing
on the same chip. Figure 1.1 shows the memory hierarchy in a typical

L
3

(S
L
L
C

)

Processor

M
e
m

o
ry

C
o
n
tro

lle
r

Main Memory

L1 L2Core

L1 L2Core

DRAM

DRAM

DRAM

L1 L2Core

L1 L2Core

Figure 1.1: Memory hierarchy of a typical multicore processor with two private cache

levels and one shared level. The processor has an on-chip memory controller with

three memory channels.

1

multicore processor (e.g., Intel Nehalem). In this case, each core has ac-
cess to a set of private cache levels (L1 & L2) and all cores on the chip
share the last-level cache (L3) and the memory controller. Understand-
ing how these resources are shared has become crucial when analyzing
the performance of a modern processor. This thesis focuses on methods
to model the behavior of modern multicore processors and their memory
systems.

There are different approaches to modeling processors and memory
systems. The amount of detail needed from a model depends on how the
results are going to be used. When modeling a memory system with the
goal of program optimizations, it can be enough to know which instruc-
tions are likely to cause cache misses. This can be modeled by statistical
models such as StatCache [3] or StatStack [10], which model an appli-
cation’s miss ratio (misses per memory access) as a function of cache size.
Since miss ratios can be associated with individual instructions, such data
can be used to guide cache optimizations. In Paper I, which we describe
in Chapter 2, we demonstrate a method that uses StatStack to classify
an application’s qualitative behavior (e.g., which applications are likely
to inflict performance problems upon other applications) in the shared
last-level cache. We use this classification to reason about applications’
suitability for cache optimizations. We also demonstrate a fully auto-
matic method that uses StatStack to find instructions that waste cache
space and uses existing hardware support to bypass one or more cache
levels to avoid such waste.

The classification from Paper I gives us some, qualitative, information
about which applications are likely to waste cache resources and which
applications are likely to suffer from such waste. However, it does not
quantify how the cache is shared and the resulting performance. Several
methods [5, 7, 8, 40, 47, 48] have been proposed to quantify the impact
of cache sharing. However, they either require expensive stack distance
traces or expensive simulation. There have been attempts [9, 48] to
quantify cache sharing using high-level application profiles. However,
these methods depend on performance models that estimate an applica-
tions execution rate from its miss ratio. Such models are usually hard to
produce as optimizations in high-performance cores (e.g., overlapping
memory accesses and out-of-order execution) make the relationship be-
tween miss ratio and performance non-trivial.

In Paper II, we propose a cache sharing model that uses applica-
tion profiles that can be measured on existing hardware with low over-
head [11]. These application profiles treat the core as a black box and
incorporate the performance information that would otherwise have had
to be estimated. Our model enables us to both predict the amount of
cache available to each application and the resulting performance. We

2

extend this model in Paper III to account for time-varying application
behavior. Since cache sharing depends on how memory accesses from
different cores interleave, it is no longer sufficient to just look at average
performance when analyzing the performance impact of a shared cache.
Instead, we look at distributions of performance and show that the ex-
pected performance can vary significantly (more than 15%) between two
runs of the same set of applications. We describe these techniques in
Chapter 3.

In order to model future systems, researchers often resort to using
simulators. However, the high execution overhead (often in the order
of 10 000× compared to native execution) of traditional simulators lim-
its their usability. The overhead of simulators is especially troublesome
when simulating interactions within mixed workloads as the number
of combinations of co-executing applications quickly grow out of hand.
The cache sharing models from Paper II & III can be used to decrease the
amount of simulation needed in a performance study as the simulator
only needs to produce one performance profile per application, while
the numerous interactions between applications can be estimated using
an efficient model. While this approach can decrease the amount of
simulation needed in a study, simulating large benchmark suits is still
impractical. Sampling, where only a fraction of an application needs to
be simulated in detail, has frequently been proposed [1, 6, 12, 37, 43,
44, 46] as a solution to high simulation overhead. However, most sam-
pling approaches either depend on relatively slow (1000×–10× overhead)
functional simulation [1, 6, 12, 46] to fast forward between samples or
checkpoints of microarchitectural state [37, 43, 44]. Checkpoints can
sometimes be amortized over a large number of repeated simulations.
However, new checkpoints must be generated if a benchmark, or its in-
put data, changes. Depending on the sampling framework used, check-
points might even need to be regenerated when changing microarchitec-
tural features such as cache sizes or branch predictor settings.

In order to improve simulator performance and usability, we propose
offloading execution to the host processor using hardware virtualization
when fast-forwarding simulators. In Paper IV, we demonstrate an ex-
tension to the popular gem5 [4] simulator that enables offloading us-
ing the standard KVM [16] virtualization interface in Linux, leading to
extremely efficient fast-forwarding (10% overhead on average). Native
execution in detailed simulators has been proposed before [23–25, 49].
However, existing proposals either use obsolete hardware [24], require
dedicated host machines and modified guests [49], or are limited to sim-
ulating specific subsystems [23, 25]. Our gem5 extensions run on off-
the-shelf hardware, with unmodified host and guest operating systems,
in a simulation environment with broad device support. We show how

3

these extensions, which are now available as a part of the gem5 distribu-
tion, can be used to implement highly efficient simulation sampling that
has less than 10× slowdown compared to native execution. Additionally,
the rapid fast-forwarding makes it possible to reach new samples much
faster than a single sample can be simulated, which exposes sample-level
parallelism. We show how this parallelism can be exploited to further
increase simulation speeds. We give an overview of these simulation
techniques in Chapter 4 and discuss related ongoing and future research
in Chapter 5.

4

2 Cache Bypass Modeling for

Automatic Optimizations

Applications benefit differently from the amount of cache capacity avail-
able to them; some are very sensitive, while others are not sensitive at
all. In many cases, large amounts of data is installed in the cache and
hardly ever reused throughout its lifetime in the cache hierarchy. We
refer to cache lines that are infrequently reused as non-temporal. Such
non-temporal cache lines pollute the cache and waste space that could
be used for more frequently reused data.

Figure 2.1 illustrates how a set of benchmarks from SPEC CPU2006
behave with respect to an 8MB shared last-level cache (SLLC). Appli-
cations to the right in this graph install large amounts of data that is
seldom, or never, reused while in the cache. This cache pollution can
hurt the performance of both the application causing it and co-running
applications on the same processor. Applications to the left install less
data and their data sets mostly fit in the cache hierarchy, they normally
benefit from caching. The applications’ benefit from the SLLC is shown
on the y-axis, where applications near the top are likely to benefit more
from the cache available to them, while applications near the bottom do
not benefit as much. If we could identify applications that do not ben-
efit from caching, we could potentially optimize them to decrease their
impact on sensitive applications without negatively affecting their own
performance.

The applications to the right in Figure 2.1 show the greatest poten-
tial for cache optimizations as they install large amounts of non-temporal
data that is reused very infrequently. Applications in the lower right cor-
ner of the chart are likely to not benefit from caching at all. In fact, almost
none of the data they install in the cache is likely to be reused, which
means that they tend to pollute the SLLC by wasting large amounts of
cache that could have been used by other applications. If we could iden-
tify the instructions installing non-temporal data, we could potentially
use cache-management instructions to disable fruitless caching and in-
crease the amount of cache available to applications that could benefit
from the additional space.

5

0.001%

0.01%

0.1%

1%

10%

0.01% 0.1% 1% 10% 100%

C
ac

h
e

S
e
n
si

ti
vi

ty

Base Miss Ratio

perlbench

bzip2
gcc

bwaves

gamess

mcf

milc

zeusmp

leslie3d

soplex
hmmer

h264ref

lbm

astar

sphinx3

Xalan

libquantum

Don’t Care

Victims Gobblers & Victims

Cache Gobblers

Figure 2.1: Cache usage classification for a subset of the SPEC CPU2006 benchmarks.

In Paper I, we demonstrate a high-level, qualitative, classification
scheme that lets us reason about how applications compete for cache re-
sources and which applications are good candidates for cache optimiza-
tions. Using a per-instruction cache model we demonstrate how indi-
vidual instructions can be classified depending on their cache behavior.
This enables us to implement a profile-driven optimization technique
that uses a statistical cache model [10] and low-overhead profiling [2,
33, 41] to identify which instructions use data that is unlikely to benefit
from caching.

Our method uses per-instruction cache reuse information from the
cache model to identify instructions installing data in the cache that is
unlikely to benefit from caching. We use this information in a compiler
optimization pass to automatically modify the offending instructions us-
ing existing hardware support. The modified instructions bypass parts
of the cache hierarchy, preventing them from polluting the cache. We
demonstrate how this optimization can improve performance of mixed
workloads running on existing commodity hardware.

Previous research into cache bypassing has mainly focused on hard-
ware techniques [13, 14, 21, 22] to detect and avoid caching of non-
temporal data. Such proposals are important for future processors, but

6

are unlikely to be adopted in commodity processors. There have been
some proposals that use software techniques [36, 38, 42, 45] in the past.
However, most of these techniques require expensive simulation or hard-
ware extensions, which makes their implementation unlikely. Our tech-
nique uses existing hardware support and avoids expensive simulation
by instead using low-overhead statistical cache modeling.

2.1 Efficient Cache Modeling

Modern processors often use an approximation of the least-recently used
(LRU) replacement policy when deciding which cache line to evict from
the cache. A natural starting point when modeling LRU caches is the
stack distance [18] model. When using the stack distance abstraction,
the cache can be thought of as a stack of elements (cache lines). The
first time a cache line is accessed, it is pushed onto the stack. When a
cache line is reused, it is removed from the stack and pushed onto the
top of the stack. A stack distance is defined as the number of unique cache
lines accessed between two successive memory accesses to the same cache line,
which corresponds to the number of elements between the top of the
stack and the element that is reused. An access is a hit in the cache if the
stack distance is less than the cache size (in cache lines). An application’s
stack distance distribution can therefore be used to efficiently compute
its miss ratio (misses per memory access) for any cache size by computing
the fraction of memory accesses with a stack distances greater than the
desired cache size.

Measuring stack distances is normally very expensive (unless sup-
ported through a hardware extension [35]) since it requires state tracking
over a potentially long reuse. In Paper I, we use StatStack [10] to esti-
mate stack distances and miss ratios. StatStack is a statistical model for
fully associative caches with LRU replacement. Modeling fully associa-
tive LRU caches is, for most applications, a good approximation of the
set-associative pseudo-LRU caches implemented in hardware. StatStack
estimates an application’s stack distances using a sparse sample of the ap-
plication’s reuse distances. Unlike stack distances, reuse distances count
all memory accesses between two accesses to the same cache line. Ex-
isting hardware performance counters can therefore be used to measure
reuse distances, but not stack distances, since there is no need to keep
track of unique accesses. This leads to a very low overhead, implementa-
tions have been demonstrated with overheads as low as 20%–40% [2, 33,
41], which is orders of magnitude faster than traditional stack distance
profiling.

7

1%

8%

Private (L1+L2) Private+Shared (L1+L2+L3)

M
is

s
R

at
io

Cache Size

Figure 2.2: Miss ratio curve of an example application. Assuming a three level cache

hierarchy (where the last level is shared) that enforces exclusion, the miss ratio of the

private caches (i.e., misses being resolved by L3 or memory) is the miss ratio at the size

of the combined L1 and L2.

Our cache-bypassing model assumes that the cache hierarchy en-
forces exclusion (i.e., data is only allowed to exist in one level at a time)
and can be modeled as a contiguous stack. We can therefore think of
each level in the cache hierarchy as a contiguous segment of the reuse
stack. For example, the topmost region of the stack corresponds to L1,
the following region to L2, and so on. If we plot an application’s miss
ratio curve (i.e., its miss ratio as a function of cache size), we can visual-
ize how data gets reused from different cache levels. For example, the
application in Figure 2.2 reuses 92% of its data from the private caches
because its miss ratio at the combined size of the L1 and L2 is 8%. The
addition of an L3 cache further decreases the miss ratio to 1%.

2.2 Classifying Cache Behavior

Applications behave differently depending on the amount of cache avail-
able to them. Since the last-level cache (LLC) of a multicore is shared,
applications effectively get access to different amounts of cache depend-
ing on the other applications sharing the same cache. We refer to this
competition for the shared cache as cache contention. Some applications
are very sensitive to cache contention, while others are largely unaffected.
For example, the applications in Figure 2.3 behave differently when they
are forced to use a smaller part of the LLC. Themiss ratio of application 1
is completely unaffected, while application 2 experiences more than 2×
increase in miss ratio. This implies that application 2 is likely to suffer
a large slowdown due to cache contention, while application 1 is largely

8

0%

5%

10%

15%

20%

25%

Private Private+SLLC

M
is

s
R

at
io

Cache Size

Application 1
Application 2

Sharing
Isolation

Figure 2.3: Applications benefit differently from caching. Application 1 uses large

amounts of cache, but does not benefit from it, while application 2 uses less cache but

benefits from it. If the applications were to run together, application 1 is likely to get

more cache, negatively impacting the performance of application 2 without noticeable

benefit to itself.

unaffected. Despite deriving less benefit from the shared cache, applica-
tion 2 is likely to keep more of its data in the LLC due to its higher miss
ratio.

In order to understand where to focus our cache optimizations, we
need a classification scheme to identify which applications are sensitive
to cache contention and which are likely to cause cache contention. In
Paper I, we introduce a classification scheme that approximates an appli-
cation’s ability to cause cache contention based on its miss ratio when
run in isolation (base miss ratio) and the increase in miss ratio when only
having access to the private cache. The base miss ratio corresponds to
how likely an application is to cause cache contention and the increase
in miss ratio to the cache sensitivity.

Using an application’s sensitivity and base miss ratio, we can reason
about its behavior in the shared cache. Figure 2.1 shows the classification
of a subset of the SPEC CPU2006 benchmarks. In general, the higher
the base miss ratio, the more cache is wasted. Such applications are likely
to be good candidates for cache optimizations where one or more cache
levels are bypassed to prevent data that is unlikely to be reused from pol-
luting the cache. Applications with a high sensitivity on the other hand
are likely to be highly affected by cache contention. In order to quantify
the impact of cache contention, we need to predict the cache access rate,
which implies that we need a performance model taking cache and core
performance into account. Such a quantitative cache sharing model is
discussed in Chapter 3.

9

C
a
c
h

e
S

ta
c
k

M
R

U

L
R

U

Always Hit Miss if the ETM bit is set

Evicted
DRAM

If ETM bit not set

Evict early if ETM bit set

DRAM
L3

L1 L2Core

L1 L2Core

M
o

d
e
le

d

Figure 2.4: A system where data flagged as evict-to-memory (ETM) in L1 can be modeled

using stack distances. Each level (top) corresponds to a contiguous segment of the

cache stack (bottom). Upon eviction, cache lines with the ETM bit set are evicted

straight to memory from L1.

2.3 Optimizing Memory Accesses Causing Cache

Pollution

Many modern processors implement mechanisms to control where data
is allowed to be stored in the cache hierarchy. This is sometimes known
as cache bypassing as a cache line is prevented from being installed in
one or more cache levels, effectively bypassing them. In Paper I, we
describe a method to automatically detect which instructions cause cache
pollution and can be modified to bypass the parts of the cache hierarchy.
In order to accurately determine when it is beneficial to bypass caches we
need to understand how the hardware handles accesses that are flagged
as having a non-temporal behavior. Incorrectly flagging an instruction as
non-temporal can lead to bad performance since useful data might be
evicted from the cache too early. The behavior we model assumes that
data flagged as non-temporal is allowed to reside in the L1 cache, but
takes a different path when evicted from L1. Instead of being installed in
L2, non-temporal data is evicted straight to memory. For example, some
AMD processors treat cache lines flagged as non-temporal this way. We
model this behavior by assuming that every cache line has a special bit,
the evict to memory (ETM) bit, that can be set for non-temporal cache
lines. Cache lines with the ETM bit set are evicted from L1 to memory
instead of being evicted to the L2 cache. This behavior is illustrated in
Figure 2.4.

10

A compiler can automatically use the knowledge about which in-
structions cause cache pollution to limit it. In Paper I, we demonstrate
a profile-driven optimization pass that automatically sets non-temporal
hints on memory accesses that were deemed to have a non-temporal
behavior. Using this profile-driven optimization, we were able to dem-
onstrate up to 35% performance improvement for mixed workloads on
existing hardware.

Since our optimization work on static instructions and stack distances
are a property of dynamic memory accesses, we need to understand how
flagging a static instruction as non-temporal affects futuremisses. A naïve
approach would limit optimizations to static instructions where all stack
distances predict a future cache miss. However, this unnecessarily limits
optimizations opportunities. In order to make the model easier to follow,
we break it into three steps. Each step adds more detail to the model and
brings it closer to our reference hardware.

Strictly Non-Temporal Accesses: By looking at an instruction’s stack
distance distribution, we can determine if the next access to the cache
line used by that instruction is likely to be a cache miss. An instruction
has non-temporal behavior if all stack distances are larger or equal to the
size of the cache. In that case, we know that the next instruction to touch
the same data is very likely to be a cache miss. We can therefore flag
the instruction as non-temporal and bypass the entire cache hierarchy
without incurring additional cache misses.

Handling ETM Bits: Most applications, even purely streaming ones
that do not reuse data, exhibit spatial locality and reuse cache lines (e.g.,
a reading all words in a cache line sequentially). Hardware implementa-
tions of cache bypassing may allow data flagged as non-temporal to live
in parts of the cache hierarchy (e.g., L1) to accommodate such behaviors.
We model this by assuming that whenever the hardware installs a cache
line flagged as non-temporal, it installs it in the MRU position with the
ETM bit set. Whenever a normal memory access touches a cache line,
the ETMbit is cleared. Cache lines with the ETMbit set are evicted from
L1 to memory instead of to the L2 cache, see Figure 2.4. This allows us
to consider memory accesses as non-temporal even if they have short
reuses that hit in the L1 cache. To flag an instruction as non-temporal,
we now require that there is at least one future reuse that will be a miss
and that the number of accesses reusing data in the area of the LRU stack
bypassed by ETM-flagged cache lines (the gray area in Figure 2.4) is small
(i.e., we only tolerate a small number of additional misses).

Handling sticky ETM bits: There exists hardware (e.g., AMD family
10h) that does not reset the ETM bit when a normal instruction reuses
an ETM-flagged cache line. This situation can be thought of as sticky
ETM bits, as they are only reset on cache line evictions. In this case, we

11

0.001%

0.01%

0.1%

1%

10%

0.01% 0.1% 1% 10% 100%

C
ac

h
e

S
e
n
si

ti
vi

ty

Base Replacement Ratio

bwaves

milc

leslie3d

soplex

lbm

libquantum

Baseline Optimized

Don’t Care

Victims Gobblers & Victims

Cache Gobblers

Figure 2.5: Classification of a subset of the SPEC CPU2006 benchmarks after applying

our cache optimizations. All of the applications move to the left in the classification

chart, which means that they cause less cache pollution.

can no longer just look at the stack distance distribution of the current
instruction since the next instruction to reuse the same cache line might
result in a reuse from one of the bypassed cache levels. Due to the stick-
iness of ETM bits, we need to ensure that both the current instruction
and any future instruction reusing the cache line through L1 will only
access it from L1 or memory to prevent additional misses.

2.4 Effects on Benchmark Classification

Bypassing caches for some memory accesses changes how applications
compete for shared caches. In cache-optimized applications, some mem-
ory accesses fetch data without installing it in one or more cache levels.
Since cache contention is caused by cache replacements, we need to re-
classify optimized application based on how frequently they cause cache
replacements (i.e., their replacement ratio) instead of how frequently
they miss in the cache. Figure 2.5 shows how the classification changes
for applications that were deemed to be good targets for cache optimiza-
tions. In all cases, the number of cache replacements decrease (decreased

12

replacement ratio), which leads to less cache contention and more space
for useful data. In Paper I, we show how these changes in classification
translate into performance improvements when running mixed work-
loads on a real system.

2.5 Summary

In Paper I, we demonstrated a method to classify an application’s cache
usage behavior from its miss ratio curve. This enables us to reason, qual-
itatively, about an application’s cache behavior. Using this classification
scheme, we identified applications that were suitable targets for cache
optimizations and demonstrated a profile-based method that automati-
cally detects which instructions bring in data that does not benefit from
caching. We show how this per-instruction information can be used by
a compiler to automatically insert cache-bypass instructions. Our meth-
od uses a statistical cache model together with low-overhead application
profiles, making it applicable to real-world applications.

The automatic cache bypassing method in Paper I optimized for the
total amount of cache available in the target system. However, this might
not be the optimal size. If the applications that are going to run together
are known (or if the optimization is done online), we could determine
the amount of cache available to each application and apply more aggres-
sive optimizations. A prerequisite for such optimizations is an accurate
cache model that can tell us how the cache is divided among applications,
which we investigate in Paper II & III (see Chapter 3).

13

3 Modeling Cache Sharing

When modeling a multicore processor, we need to understand how re-
sources are shared to accurately understand its performance. We might
for example want to understand how performance is affected by different
thread placements, how software optimizations affect sharing, or how a
new memory system performs. The type of model needed can be very
different depending on how the output of the model is going to be used.
The classification introduced in the previous chapter is an example of
a qualitative model that identifies high-level properties of an application
(e.g., whether it is likely to cause cache contention), but does not quan-
tify how the cache is shared and the resulting performance. This type of
qualitative classification can be sufficient in some cases, such as when a
scheduler decides where to execute a thread. A hardware designer eval-
uating a new memory system on the other hand will need a quantitative
model that estimates the performance impact of different design options.
However, the additional detail of a quantitative model usually comes
with a high overhead.

One of the most common ways of quantifying application perfor-
mance today is through simulation. This approach unfortunately lim-
its the studies that can be performed due to the overhead imposed by
state-of-the-art simulators. For example, the popular gem5 [4] simula-
tor simulates around 0.1 million instructions per second (MIPS) on a
system that natively executes the same workload at 3 billion instructions
per second (GIPS), which is equivalent to a 30 000× slowdown. This
clearly limits the scale of the experiments that can be performed. Ad-
ditionally, if we are interested in measuring the impact of sharing, the
number of combinations of applications running together quickly grows
out of hand.

In this chapter, we describe methods to quantify the impact of cache
sharing from Paper II & III. These methods enable us to estimate the
amount of cache available to each application in a mixed workload as
well as per-application execution rates and bandwidth demands.

One approach to model cache sharing is to extend an existing statisti-
cal cache model, such as StatStack [10], with support for cache sharing.
This approach was taken by Eklöv et al. [9] in StatCC, which combines

15

StatStack and a simple IPC model to predict the behavior of a shared
cache. The drawback of this approach is the need for a reliable perfor-
mance model that predicts an application’s execution rate (IPC) as a
function of its miss ratio. Another approach would be to include perfor-
mance information as a function of cache size in the input data to the
model. Such performance profiles can be measured on existing hardware
using Cache Pirating [11], which eliminates the need for complex perfor-
mance models when modeling existing systems. When modeling future
systems, we can generate the same profiles through simulation. This
reduces the amount of simulation needed as the profiles are measured
once per application, while cache sharing and the resulting performance
can be estimated by an efficient model. In Paper II, we show that both
simulated and measured application profiles can be used to model cache
sharing.

In Paper II & III we model both how the cache is divided among co-
running applications and how this affects performance. In Paper II, we
focus on steady-state behavior where all applications have a time-stable
cache behavior. In practice, however, many applications have time vary-
ing behavior. In Paper III, we extend the cache sharing model from Pa-
per II to predict how such time-dependent behavior affects cache sharing.
We show that looking at average behavior is not enough to accurately pre-
dict performance. Instead we look at how performance varies depending
on how memory accesses from co-running applications interleave.

3.1 Measuring Cache-Dependent Behavior

Our cache sharing models use application profiles with information
about cache misses, cache hits, and performance as a function of cache
size. Such profiles can be measured on existing hardware using Cache Pi-
rating [11]. This enables us to model existing systems as a black box by
measuring how applications behave as a function of cache size on the
target machine with low overhead.

Cache Pirating uses hardware performance monitoring facilities to
measure target application properties at runtime, such as cache misses,
hits, and execution cycles. To measure this information for varying cache
sizes, Cache Pirating co-runs a small cache intensive stress application
with the target application. The stress application accesses its entire data
set in a tight loop, effectively stealing a configurable amount of shared
cache from the target application. The amount of shared cache available
to the target application is then varied by changing the cache footprint
of the stress application. This enables Cache Pirating to measure any per-
formance metric exposed by the target machine as a function of available
cache size.

16

0

1

2

3

4

0 2 4 6 8 10 12

C
P
I

Cache Size [MB]

Average
Phase 𝖠

Phase 𝖡
Phase 𝖢

(a) Average behavior

𝖠1 𝖡1 𝖢1 𝖠2 𝖡2

0 50
100

150
200

250
300

350

Time in Billions of Instructions

0

2

4

6

8

10

12

C
ac

h
e

S
iz

e
[M

B
]

0

1

2

3

4

C
P
I

Detected Phases

(b) Time-aware behavior

Figure 3.1: Performance (CPI) as a function of cache size as produced by Cache Pirating.

Figure (a) shows the time-oblivious application average as a solid line as well as the

average behavior of a few significant phases. Figure (b) shows the time-dependent

cache sensitivity and the identified phases (above). The behavior of the three largest

phases deviate significantly from the global average as can be seen by the dashed lines

in Figure (a).

In order to model time-varying behavior, we extend Cache Pirating
to measure an application’s time-varying behavior. In its simplest form,
time-varying behavior is sampled in windows of a fixed number of in-
structions. Capturing this time-varying behavior is important as very few
real-world applications have a constant behavior. For example, the astar

benchmark from SPEC CPU2006 has three distinct types of behavior,
or phases, with very different performance. This is illustrated in Fig-
ure 3.1, which shows: a) the performance (CPI) as a function of cache
size for the three different phases and the global average; and b) the
time-varying behavior of the application annotated with phases. As seen

17

in Figure 3.1(a), the average does not accurately represent the behavior
of any of the phases in the application.

Phase information can be exploited to improve modeling perfor-
mance and storage requirements. We extend Cache Pirating to incor-
porate phase information using the ScarPhase [34] library. ScarPhase
is a low-overhead, online, phase-detection library. A crucial property
of ScarPhase is that it is execution-history based, which means that the
phase classification is independent of cache sharing effects. The phases
detected by ScarPhase can be seen in the top bar in Figure 3.1(b) for as-

tar, with major phases labeled. This benchmark has three major phases;
𝖠, 𝖡 and 𝖢, all with different cache behaviors. The same phase can oc-
cur several times during execution. For example, phase 𝖠 occurs twice,
once at the beginning and once at the end of the execution. We refer to
multiple repetitions of the same phase as instances of the phase, e.g., 𝖠1
and 𝖠2 in Figure 3.1(b).

3.2 Modeling Cache Sharing

When modeling cache sharing, we look at co-executing application
phases and predict the resulting amount of cache per application. We
make the basic assumption that the behavior within a phase is time-stable
and that sharing will not change as long as the same phases co-execute.
We refer to the time-stable behavior when a set of phases co-execute as
their steady state. When modeling applications with time-varying behav-
ior, we need to predict which phases will co-execute. Knowing which
phases will co-execute when the applications start, we model their be-
havior and use the calculated cache sizes to determine their execution
rates from the cache-size dependent application profiles. Using the ex-
ecution rates, we determine when the next phase transition occurs and
redo the calculations for the next set of co-executing phases.

The amount of cache available to an application depends on two fac-
tors: The application’s behavior and the cache replacement policy. In
Paper II we introduce two cache sharing models, one for random replace-
ment and one for LRU replacement. In terms of modeling, these two
policies are very different. Unlike random replacement, where a replace-
ment target is picked at random, the LRU policy exploits access history
to replace the cache line that has been unused for the longest time.

A cache with random replacement can intuitively be thought of as an
overflowing bucket. When two applications share a cache, their behavior
can be thought of as two different liquids filling the bucket at different
rates (their cache miss rates). The two in-flows correspond to misses that
cause data to be installed in the cache and the liquid pouring out of the

18

bucket corresponds to cache replacements. If the in-flows are constant,
the system will eventually reach a steady state. At steady state, the con-
centrations of the liquids are constant and proportional to their relative
inflow rates. Furthermore, the out-flow rates of the different liquids are
proportional to their concentrations (fractions of the SLLC). In fact, this
very simple analogy correctly describes the behavior of random caches.

The overflowing bucket analogy can be extended to caches that use
the LRU replacement policy. Cache lines that are not reused while in
the cache can be thought of as the liquid in the bucket, while cache lines
that are reused behave like ice cubes that float on top of the liquid and
stay in the bucket.

3.3 Modeling LRU Replacement

LRU replacement uses access history to replace the item that has been
unused for the longest time. We refer to the amount of time a cache line
has been unused as its age. Whenever there is a replacement decision,
the oldest cache line is replaced.

Since we only use high-level input data, we cannot model the be-
havior of individual cache lines or sets. Instead, we look at groups of
cache lines with the same behavior and assume a fully-associative cache.
Since the LRU policy always replaces the oldest cache line, we consider
a group of cache lines to have the same behavior if they share the same
maximum age, which enables us to identify the group affected by a re-
placement. Since the ages of the individual cache lines within a group
will be timing-dependent, we model all entries in the cache with the
same maximum age as having the same likelihood of replacement.

One of the core insights in Paper II is that we can divide the data in
a shared cache into two different categories and use different models de-
pending on their reuse patterns. The first category, volatile data, consists
of all data that is not reused while in the cache. The second category,
sticky data, contains all data that is reused in the cache.

The size of each application’s volatile data set and sticky data set is
cache-size dependent, the more cache available, the more volatile data
can be reused and become sticky. Additionally, in a shared cache, the
division between sticky and volatile data depends on the maximum age
in the volatile group (which is shared between all cores). This means that
we have to know the size of the sticky data sets to determine the size of
the volatile data set and vice versa. In order to break this dependency,
we use a fixed point solver that finds a solution where the ages of sticky
and volatile data are balanced.

19

Modeling Volatile Data

When applications do not reuse their data before it is evicted from the
cache, LRU caches degenerate into FIFO queues with data moving from
the MRU position to the LRU position before being evicted. Similar
to a random cache, the amount of cache allocated to an application is
proportional to its miss rate.

Sticky data and volatile data from different applications compete for
cache space using age, we therefore need to determine the maximum age
of volatile data. Since LRU caches can be modeled as FIFO queues for
volatile data, we can determine the maximum age of volatile data using
Little’s law [17]. Little’s law sets up a relationship between the number
of elements in a queue (size), the time spent in the queue (maximum
age) and the arrival rate (miss rate). The miss rate can be read from
application profiles for a given cache size, while the size of the volatile
data set is whatever remains of the cache after sticky data has been taken
into account.

Modeling Sticky Data

Unlike volatile data, sticky data stays in the cache because it is reused
before it grows old enough to become a victim for eviction. When a
sticky cache line is not reused frequently enough, it becomes volatile.
This happens if a sticky cache line is older than the oldest volatile cache
line. In our model, wemake the decision to convert sticky data to volatile
data for entire groups of cache lines with the same behavior (i.e., having
the same maximum age).

In order to determine if a group of sticky data should be reclassified as
volatile, we need to know its age. Similar to volatile data, we can model
the maximum age of a group of sticky data using Little’s law. In this case,
each group of sticky cache lines can be thought of as a queue where cache
lines get reused when they reach the head of the queue. After a reuse,
the reused cache line is moved to the back of the queue.

The amount of sticky data can be estimated from how an applica-
tion’s hit ratio changes with its cache allocation. The relative change
in hit ratio is proportional to the relative change in the sticky data. For
example, if half of the misses an application currently experiences dis-
appear when the amount of cache available to it is grown by a small
amount, half of the application’s currently volatile data must have trans-
formed into sticky data.

Both the amount of volatile data and the maximum age of volatile
data are described by differential equations. We describe these in detail
in Paper II.

20

Solver

Using the requirements defined above, we can calculate how the cache
is shared using a numerical fixed point solver. The solver starts with an
initial guess, wherein the application that starts first has access to the
entire cache and the other applications do not have access to any cache.
The solver then lets all applications compete for cache space by enforcing
the age requirement between sticky and volatile cache lines. If the age
requirement cannot be satisfied for an application, the solver shrinks that
application’s cache allocation until the remaining sticky data satisfies the
age requirement. The cache freed by the shrinking operation is then
distributed among all applications by solving the sharing equations for
the volatile part of the cache.

The process of shrinking and growing the amount of cache allocated
to the applications is repeated until the solution stabilizes (i.e., no ap-
plication changes its cache allocation significantly). Once the solver has
arrived at a solution, we know how the cache is shared between the ap-
plications. Using this information, performance metrics (e.g., CPI) can
be extracted from cache-size dependent application profiles like the ones
used to drive the model.

3.4 Modeling Time

The difficulty in modeling time-dependent cache sharing is to determine
which parts of the co-running applications (i.e., windows or phases) will
co-execute. Since applications typically execute at different speeds de-
pending on phase, we cannot simply use windows starting at the same
dynamic instruction count for each application since they may not over-
lap. For example, consider two applications with different executions
rates (e.g., CPIs of 2 and 4), executing windows of 100 million instruc-
tions. The slower application with a CPI of 4 will take twice as long to
finish executing its windows as the one with a CPI of 2. Furthermore,
when they share a cache they affect each other’s execution rates.

In Paper III, we demonstrate three different methods to handle time.
The first, window-based method (Window) uses the execution rates of
co-running windows to advance each application. The second, dynamic-
window-based method (Dynamic Window), improves on the window-
based method by exploiting basic phase information to merge neigh-
boring windows with the same behavior. The third, phase-based meth-
od (Phase), exploits the recurring nature of some phases to avoid recal-
culating previously seen sharing patterns.

21

Window: To determine which windows are co-executing, we model
per-window execution rates and advance applications independently be-
tween their windows. Whenever a new combination of windows occurs,
we model their interactions to determine the new cache sharing and the
resulting execution rates. This means that the cache model needs to
be applied several times per window since windows from different ap-
plications will not stay aligned when scaled with their execution rates.
For example, when modeling the slowdown of astar co-executing with
bwaves, we invoke the cache sharing model roughly 13 000 times while
astar only has 4 000 windows by itself.

Dynamic Window: To improve the performance of our method, we
need to reduce the number of times the cache sharing model is invoked.
To do this, we merge multiple adjacent windows belonging to the same
phase into a larger window, a dynamic window. For example, in astar (Fig-
ure 3.1), we consider all windows in phase 𝖠1 as one unit (i.e., the aver-
age of the windows) instead of looking at every individual windowwithin
the phase. Compared to the window-based method, this method is dra-
matically faster. When modeling astar running together with bwaves we
reduce the number of times the cache sharing model is used from 13000
to 520, which leads to 25× speedup over the window-based method.

Phase: The performance can be further improved by merging the
data for all instances of a phase. For example, when considering as-

tar (Figure 3.1), we consider all phase instances of 𝖠 (i.e., 𝖠1 + 𝖠2) as one
unit. This optimization enables us to reuse cache sharing results for co-
executing phases that reappear [39]. For example, when astar’s phase 𝖠1
co-executes with bwaves’s phase 𝖡, we can save the cache sharing re-
sults and later reuse them if the second instance of 𝖠 (𝖠2) co-executes
with phase 𝖡 in bwaves. In the example with astar and bwaves, we can
reuse the results from previous cache sharing solutions 380 times. We
therefore only need to run the cache sharing model 140 times. The per-
formance of the phase-based method is highly dependent on an applica-
tion’s phase behavior, but it normally leads to a speed-up of 2–10× over
the dynamic-window method.

The main benefit of the phase-based method is when determining
performance variability of a mix. In this case, the same mix is modeled
several times with slightly different offsets in starting times. The same
co-executing phases will usually reappear in different runs. For example,
when modeling 100 different runs of astar and bwaves, we need to evalu-
ate 1 400 000 co-executing windows, but with the phase-based method
we only need to run the model 939 times.

22

0

0.5

1

1.5

2

2.5

as
ta

r
IP

C

0

0.5

1

1.5

2

2.5

b
w

av
e
s

IP
C

0

1

2

3

4

S
ys

te
m

IP
C

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

S
ys

te
m

B
W

[G
B

/s
]

Time [s]

(a) Modeled performance of a single run

0

5

10

15

20

25

30

0 5 10 15 20

2 7.7 17

P
o
p
u
la

ti
o
n

[%
]

Slowdown [%]

A
ve

ra
ge

(b) Performance variation across 100 runs

Figure 3.2: Performance of astar co-executing with bwaves. Figure (a) shows the per-

application performance (IPC), the aggregate system performance, and the memory

bandwidth required to achieve this performance. Figure (b) shows how the perfor-

mance of astar varies across 100 different runs with bwaves. The high performance

variability indicates that we need performance data from many different runs to under-

stand how such application behave.

23

Time-Varying Application Behavior

When modeling the behavior of a workload, we can predict how mul-
tiple performance metrics vary over time. In many ways, this is similar
to the information we would get from a simulator running the same set
of applications, but much faster. The behavior of two applications from
SPEC CPU2006, astar and bwaves, is shown in Figure 3.2(a). The figure
shows the performance (IPC) per application when co-scheduled and
the aggregate system throughput and bandwidth. As seen in the figure,
both applications exhibit time-varying behavior, which means that the
aggregate behavior depends on how the applications are co-scheduled.
It is therefore not possible to get an accurate description of the work-
load’s behavior from one run, instead we need to look at a performance
distribution from many runs.

In Paper III, we demonstrate both the importance of looking at perfor-
mance distributions and an efficient method to model them. For exam-
ple, looking at the slowdown distribution (performance relative to run-
ning in isolation) of astar running together with bwaves (Figure 3.2(b)),
we notice that there is a large spread in slowdown. We observe an aver-
age slowdown of 8%, but the slowdown can vary between 1% and 17%
depending on how the two applications’ phases overlap. In fact, the
probability of measuring a slowdown of 2% or less is more than 25%.

Measuring performance distributions has traditionally been a tedious
task since they require performance measurements for a large number of
runs. In the case of simulation, it might not be possible due to excessive
simulation times. In fact, it might even be hard to estimate the distribu-
tion on real hardware. In Paper III, we show how our cache modeling
technique can be used to efficiently estimate these distributions. For ex-
ample, when measuring the performance distribution in Figure 3.2(b) on
our reference system, we had to run both applications with 100 different
starting offsets. This lead to a total execution time of almost seven hours.
Using our model, we were able to reproduce the same results in less than
40 s (600× improvement).

24

3.5 Summary

In order to understand the behavior of a multicore processor, we need to
understand cache sharing. In Paper II, we demonstrated a cache sharing
model that uses high-level application profiles to predict how a cache is
shared among a set of applications. In addition to the amount of cache
available to each application, we can predict performance and bandwidth
requirements. The profiles can either be measured with low overhead on
existing systems using Cache Pirating [11] or produced using simulation.
When using simulated profiles, the model reduces the amount of simu-
lation needed to predict cache sharing since profiles only need to be cre-
ated once per application. Interactions, and their effect on performance,
between applications can be predicted by the efficient model.

In Paper III, we extended the cache sharing model to applications
with time-varying behavior. In this case, it is no longer sufficient to look
at average performance since the achieved performance can be highly
timing sensitive. Instead our model enables us to look at performance
distributions. Generating such distributions using simulation, or even by
running the applications on real hardware, has previously been impracti-
cal due to large overheads.

When modeling future systems, we still depend on simulation to gen-
erate application profiles. Since modern simulators typically execute
three to four orders of magnitude slower than the systems they simulate,
generating such profiles can be very expensive. In Paper IV (see Chap-
ter 4), we investigate a method to speed up simulation by combining
sampled simulation with native execution.

25

4 Efficient Simulation Techniques

Profile-driven modeling techniques, like the ones presented in Chap-
ter 3, can be used to efficiently predict the behavior of existing hardware
without simulation. However, to predict the behavior of future hard-
ware, application profiles need to be created using a simulator. Unfortu-
nately, traditional simulation is very slow. Simulation overheads in the
1 000×–10 000× range compared to native execution are not uncommon.
Many common benchmark suits are tuned to assess the performance of
real hardware and can take hours to run natively; running them to com-
pletion in a simulator is simply not feasible. Figure 4.1 compares execu-
tion times of individual benchmarks from SPECCPU2006when running
natively and projected simulation times using the popular gem5 [4] full-
system simulator. While the individual benchmarks take 5–15 minutes
to execute natively, they take between a week and more than a month
to execute in gem5’s fastest simulation mode. Simulating them in detail
adds another order of magnitude to the overhead. The slow simulation

1 hour

1 day

1 week
1 month

1 year

400.perlbench

401.bzip2

416.gam
ess

433.m
ilc

453.povray

456.hm
m
er

458.sjeng

462.libquantum

464.h264ref

471.om
netpp

481.w
rf

482.sphinx3

483.xalancbm
k

Native Sim. Fast Sim. Detailed

Figure 4.1: Native and projected execution times using gem5’s functional and detailed

out-of-order CPUs for a selection of SPEC CPU2006 benchmarks.

27

rate is a severe limitation when evaluating new high-performance com-
puter architectures or researching hardware/software interactions. Faster
simulation methods are clearly needed.

Low simulation speed has several undesirable consequences: 1) In
order to simulate interesting parts of a benchmark, researchers often fast-
forward to a point of interest (POI). In this case, fast forwarding to a new
simulation point close to the end of a benchmark takes between a week
and a month, which makes this approach painful or even impractical.
2) Since fast-forwarding is relatively slow and a sampling simulator such
as SMARTS [46] can never execute faster than the fastest simulation
mode, it is often impractical to get good full-application performance es-
timates using sampling techniques. 3) Interactive use is slow and painful.
For example, setting up and debugging a new experiment would bemuch
easier if the simulator could execute at human-usable speeds.

In this chapter, we describe methods from Paper IV to overcome
these limitations by extending a classical full-system simulator to use
hardware virtualization to execute natively between POIs. Using this ex-
tension we implement a sampling framework that enables us to quickly
estimate the performance of an application running on a simulated sys-
tem. The extremely efficient fast-forwarding between samples enables
us to reach new sample points more rapidly than a single sample can
be simulated. Using an efficient state-copying strategy, we can exploit
sample-level parallelism to simulate multiple samples in parallel.

Our implementation targets gem5, which is a modular discrete-event
full-system simulator. It provides modules simulating most common
components in a modern system. The standard gem5 distribution in-
cludes several CPU modules, notably a detailed superscalar out-of-order
CPU module and a simplified faster functional CPU module that can be
used to increase simulation speed at a loss of detail. We extended this
simulator to add support for native execution using hardware virtual-
ization through a new virtual CPU module1. The virtual CPU module
can be used as a drop-in replacement for other CPU modules in gem5,
thereby enabling rapid execution and seamless integration with the rest
of the simulator. We demonstrate how this CPU module can be used to
implement efficient performance sampling and how the rapid execution
between samples exposes parallelism that can be exploited to simulate
multiple samples in parallel.

1The virtual CPU module, including support for both ARM and x86, has been
included in stable gem5 releases since version 2013_10_14.

28

4.1 Integrating Simulation and Hardware Virtualization

The goals of simulation and virtualization are generally very different.
Integrating hardware virtualization into gem5 requires that we ensure
consistent handling of 1) simulated devices, 2) time, 3) memory, and 4)
processor state. These issues are discussed in detail below:

Consistent Devices: The virtualization layer does not provide any de-
vice models, but it does provide an interface to intercept device accesses.
A CPU normally communicates with devices through memory mapped
IO and devices request service from the CPU through interrupts. Ac-
cesses to devices are intercepted by the virtualization layer, which hands
over control to gem5. In gem5, we take the information provided by
the virtualization layer and synthesize a simulated device access that is
inserted into the simulated memory system, allowing it to be seen and
handled by gem5’s device models. Conversely, when a device requires
service, the CPU module sees the interrupt request from the device and
injects it into the virtual CPU using KVM’s interrupt interface.

Consistent Time: Simulating time is difficult because device models
(e.g., timers) execute in simulated time, while the virtual CPU executes
in real time. A traditional virtualization environment solves this issue
by running device models in real time as well. For example, if a timer
is configured to raise an interrupt every second, it would setup a timer
on the host system that fires every second and injects an interrupt into
the virtual CPU. In a simulator, the timer model inserts an event in the
event queue one second into the future and the event queue is executed
tick by tick. We bridge the gap between simulated time and the time
as perceived by the virtual CPU by restricting the amount of host time
the virtual CPU is allowed to execute between simulator events. When
the virtual CPU is started, it is allowed to execute until a simulated de-
vice requires service. Due to the different execution rates between the
simulated CPU and the host CPU (e.g., a server simulating an embed-
ded system), we scale the host time to make asynchronous events (e.g.,
interrupts) happen with the right frequency relative to the executed in-
structions.

Consistent Memory: Interfacing between the simulated memory sys-
tem and the virtualization layer is necessary to transfer state between the
virtual CPU module and the simulated CPU modules. Since gem5 stores
the simulated system’s memory as contiguous blocks of physical mem-
ory, we can look at the simulator’s internal mappings and install the same
mappings in the virtual system. This gives the virtual machine and the
simulated CPUs the same view of memory. Additionally, since virtual

29

CPUs do not use the simulated memory system, we ensure that simu-
lated caches are disabled (i.e., we write back and flush simulated caches)
when switching to the virtual CPU module.

Consistent State: Converting between the processor state representa-
tion used by the simulator and the virtualization layer, requires detailed
understanding of the simulator internals. There are several reasons why a
simulator might be storing processor state in a different way than the ac-
tual hardware. For example, in gem5, the x86 flag register is split across
several internal registers to allow more efficient dependency tracking in
the pipeline models. We implement the relevant state conversion, which
enables online switching between virtual and simulated CPU modules as
well as simulator checkpointing and restarting.

When fast-forwarding to a POI using the virtual CPU module, we
execute at 90% of native speed on average across all SPEC CPU2006
benchmarks. This corresponds to a 2 100× performance improvement
over the functional CPU module. The much higher execution rate en-
ables us to fast-forward to any point within common benchmark suits in
the matter of minutes instead of weeks.

4.2 Hardware-Accelerated Sampling Simulation

To make simulators usable for larger applications, many researchers have
proposed methods to sample simulation [6, 37, 43, 44, 46]. With sam-
pling, the simulator can run in a faster, less detailed mode between sam-
ples, and only spend time on slower detailed simulation for the individual
samples. Design parameters such as sampling frequency, cache warming
strategy, and fast forwarding method give the user the ability to control
the trade-off between performance and accuracy to meet his or her needs.
However, these proposals all depend on comparatively slow functional
simulation between samples.

In Paper IV, we implement a sampling simulator inspired by the
SMARTS [46] methodology. SMARTS uses three different modes of
execution to balance accuracy and simulation overhead. The first mode,
functional warming, is the fastest functional simulation mode and exe-
cutes instructions without simulating timing, but still simulates caches
and branch predictors to maintain long-lived microarchitectural state.
This modemoves the simulator from one sample point to another and ex-
ecutes the bulk of the instructions. The second mode, detailed warming,
simulates the entire system in detail using an out-of-order CPU model
without sampling any statistics. This mode ensures that pipeline struc-
tures with short-lived state (e.g., load and store buffers) are in a repre-
sentative, warm, state. The third mode, detailed sampling, simulates the

30

Functional Warming Detailed Simulation
Detailed Warming

Sampling Interval

Time

(a) SMARTS Sampling

Time

Detailed Simulation (OoO CPU)
Detailed Warming (OoO CPU)
Functional Warming (Atomic CPU)
Virtualized Fast-Forwarding

Sampling Interval

(b) FSA Sampling

Time

Core 4

Core 3

Core 2

Core 1

(c) pFSA Sampling

Figure 4.2: Comparison of how different sampling strategies interleave different simu-

lation modes.

system in detail and takes the desired measurements. The interleaving
of these simulation modes is shown in Figure 4.2(a).

SMARTS uses a technique known as always-on cache and branch pre-
dictor warming, which guarantees that these resources are warm when
a sample is taken. This makes it trivial to ensure that the long-lived
microarchitectural state (e.g., in caches and branch predictors) is warm.
However, the overhead of always-on cache warming, which effectively
prevents efficient native execution, is significant. We trade-off this guar-
antee for dramatic performance improvements (on the order of 500×)
and demonstrate a technique that can be used to detect and estimate
errors due to limited functional warming.

In traditional SMARTS-like sampling, the vast majority of the sim-
ulation time is spent in the functional warming mode [43, 46]. To re-
duce the overhead of this mode, we execute instructions natively on the
host CPU using the virtual CPU module when the simulator is executing
between samples. However, we cannot directly replace the functional
warming mode with native execution, as it cannot warm the simulated
caches and branch predictors. Instead, we add a new execution mode,
virtualized fast-forward, which uses the virtual CPU module to execute
between samples. After executing to the next sample in the virtualized

31

0

20

40

60

80

100

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2
E
x
e
cu

ti
o
n

R
at

e
[%

o
f
n
at

iv
e
]

E
x
e
cu

ti
o
n

R
at

e
[G

IP
S
]

Cores

Ideal
Virt. F-F

Fork Max
pFSA

Figure 4.3: Simulator scalability when simulating 471.omnetpp using pFSA with 5 million

instructions cache warming.

fast-forward mode, we switch to the functional warming mode, which
now only needs to run long enough to warm caches and branch predic-
tors. This enables us to execute the vast majority of our instructions at
near native speed through hardware virtualization (Figure 4.2(b)). We
call this sampling approach Full Speed Ahead (FSA) sampling.

When simulating using SMARTS, the simulation speed is limited by
the speed of the functional simulation mode. In practice, our reference
implementation of SMARTS in gem5 executes around 1MIPS. Since
FSA uses variable functional warming, its execution rate depends on the
simulated cache configuration. Common cache configurations typically
result in execution rates around 90–600MIPS across the SPECCPU2006
benchmarks.

4.3 Exploiting Sample-Level Parallelism

Despite executing the majority of the instructions natively, FSA still
spends the majority of its time in the non-virtualized simulation modes
(typically 75%–95%) to warm and measure sample points. This means
that we can reach new sample points much faster than we can simulate a
single sample point, which exposes parallelism between samples. To sim-
ulate multiple sample points in parallel, we need to do two things: copy
the simulator state for each sample point (to enable them to execute
independently), and advance the simulator to the next sample point be-
fore the previous samples have finished simulating (to generate parallel
work). We implement such a parallel simulator by continuously running
the simulator in the virtualized fast-forward mode, and cloning the simu-
lator state using the host operating system’s copy-on-write functionality

32

0

1

2

3

4

5

0 2 4 6 8 10

R
e
la

ti
ve

IP
C

E
rr

o
r

[%
]

Functional Warming [Million Instructions]

456.hmmer 471.omnetpp

Figure 4.4: Estimated relative IPC error due to insufficient cache warming as a func-

tion of functional warming length for 456.hmmer and 471.omnetpp when simulating a

system with a 2 MB L2 cache.

(using fork on UNIX) when we want to take a sample. We then simu-
late the cloned sample in parallel with the continued fast-forwarding of
the original execution. We call this simulation mode Parallel Full Speed
Ahead (pFSA) sampling. pFSA has the same execution modes as FSA,
but unlike FSA the functional and detailed modes execute in parallel
with the virtualized fast-forward mode (Figure 4.2(c)).

Despite the potentially large amount of state that needs to be copied
for each sample, our parallel simulator scales well. Figure 4.3 shows
the scalability of the simulator when simulating 471.omnetpp from SPEC
CPU2006. This benchmark can be simulated at around 45% of its native
execution speed when using eight cores. In this case, the fork overhead
was estimated to limit the benchmark to roughly 50% of its native ex-
ecution speed. In Paper IV, we evaluate the scalability of the sampling
methodology when simulating systems on a large machine and show that
almost linear scalability can be achieved up to at least 32 cores.

4.4 Estimating Warming Errors

Since FSA and pFSA use limitedwarming of long-lived architectural state
(e.g., caches and branch predictors), there is a risk of insufficient warm-
ing, which can lead to incorrect simulation results. To detect and esti-
mate the impact of limited warming, we devise an efficient simulation
strategy that enables us to run detailed simulations for both the opti-
mistic (sufficient warming) and pessimistic (insufficient warming) cases.
We leverage our efficient state-copying mechanism to create a copy of

33

the simulator state before the detailed warming mode starts, which en-
ables us to quickly re-run detailed warming and simulation without re-
running functional warming. This results in a very small overhead since
the simulator typically spends less than 10% of its execution time in the
detailed modes. The difference between the pessimistic and optimistic
cases gives us insight into the impact of functional warming.

We currently only support error estimation for caches, where the op-
timistic and pessimistic cases differ in the way we treat warming misses,
i.e., misses that occur in sets that have not been fully warmed. In the op-
timistic case, we assume that all warming misses are actual misses (i.e.,
sufficient warming). This may underestimate the performance of the
simulated cache as some of themisses might have been hits had the cache
been fully warmed. In the pessimistic case, we assume that warming
misses are hits (i.e., worst-case for insufficient warming). This overes-
timates the performance of the simulated cache since some of the hits
might have been capacity misses. When sufficient warming has been
applied, the difference between the two should be small. For example,
Figure 4.4 shows the relative IPC difference between the two cases (rel-
ative IPC error) for two applications as a function of functional warming
length. Applications have very different warming behavior due their ac-
cess patterns. This highlights both the need for sufficient warming and
the need to detect if warming was insufficient.

4.5 Summary

In Paper IV, we described an efficient method to fast-forward simulation
at near-native speed (90% of native on average) using hardware virtual-
ization. Our implementation extends the gem5 simulation system with
a new virtual CPUmodule that integrates seamlessly with existing device
models. This CPU module enables extremely rapid fast-forwarding to a
point of interest in simulated applications. We showed how this capa-
bility enabled us to implement a highly efficient sampling simulator that
maintains good accuracy (2.0% error on average). Due to the extremely
rapid fast-forwarding, we can reach the next sample before the simulator
finished simulating the previous sample. This exposes sample-level paral-
lelism which we exploit to simulate multiple samples in parallel, reach-
ing a simulation rate of up to 63% of native execution. We achieved
a speedup of almost three orders of magnitude compared to functional
simulation and around four orders of magnitude compared to detailed
simulation.

34

5 Ongoing & Future Work

We are currently working on extensions and improvements to the fast
simulation framework presented in Paper IV. The methods presented in
this thesis enable extremely efficient simulation (around 400MIPS for
FSA and 2GIPS for pFSA) of single-core systems with moderately sized
caches. In order to efficiently simulate multicore systems, we need to add
support for simulating multiple CPUs in a shared-memory configuration
using the virtual CPU module. Additionally, to get good performance
when simulating future systems with large caches, we need to improve
the cache warming strategy. We are currently working on solutions to
both of these issues.

5.1 Multicore System Simulation

The virtualization layer assumes that each simulated core runs in its
own simulator thread when fast-forwarding a simulated multicore sys-
tem. This means that devices and CPUs do not necessarily execute in
the same thread, which leads to the following two challenges: First, we
need to ensure that accesses to simulated devices are synchronized since
a simulated core can request service from a device model in a different
simulator thread. Second, timing gets more challenging since devices
and CPUs live in different threads and simulated event queues.

A first step towards fast-forwarding ofmulticore systems using the vir-
tual CPUmodule is to be able to fast-forwardmultiple systems communi-
cating over a simulated network. This is simpler than true multicore sim-
ulation since each system has its own private device models (no synchro-
nization is needed when accessing devices) and communication happens
at well-defined places with long latency (easier to control skew between
simulator threads). We have implemented support for multi-system sim-
ulation using gem5’s support for quantum-based parallel discrete-event
simulation. However, using quantum-based synchronization can lead to
poor scalability since it requires synchronization between communicat-
ing threads more frequently than the shortest communication latency
between them.

35

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8

T
h
ro

u
gh

p
u
t

[G
IP

S
]

Simulated Cores

Native Execution
1ms

500 µs
100 µs

Figure 5.1: Performance (sum of per-core execution rates) of gem5 fast-forwarding

a multicore system executing LU from splash2 using the virtual CPU module and re-

laxed barriers compared to native execution. The synchronization interval controls the

trade-off between timing accuracy and speed.

We cannot rely on quantum-based synchronization when simulating
multicore systems since this would incur a high synchronization cost and
lead to poor scalability. We are currently extending the virtual CPUmod-
ule to support multicore simulation using relaxed synchronization (sim-
ilar to the relaxed barriers in Graphite [19]), where barriers are used to
synchronize CPUs and devices less frequently than the shortest commu-
nication latency. This synchronization approach enables us to control
the trade-off between maximum skew between threads and simulation
performance without affecting functional correctness. Once these ex-
tensions are in place, we plan to extend FSA and pFSA with support for
parallel workloads.

Initial performance experiments using the virtual CPU module sug-
gest that we can fast-forwardmulticore systems at high speeds. Figure 5.1
shows the execution throughput (sum of per-core execution rates) of the
parallel LU benchmark from SPLASH2 when running natively and when
running in gem5 using the virtual CPU module with different synchro-
nization intervals. Since the synchronization interval controls the maxi-
mum skew between simulated cores and devices, we need to ensure that
it is low enough to maintain predictable timing (e.g., when delivering
timer interrupts), but high enough to get acceptable performance. In
practice, synchronizing every 500 µs seems to result in reliable interrupt
delivery and a throughput of more than 10GIPS (almost 35% of native
execution) when running on eight cores. Fast-forwarding the system us-
ing functional simulation would result in a throughput of around 1MIPS
since gem5 does not (currently) support parallel functional simulation.

36

5.2 Efficient Cache Warming

When sampling in FSA, the majority of the instructions are executed na-
tively. However, the simulator still spends the majority of its time warm-
ing caches. The time spent warming caches depends on the size of the
simulated caches, which is expected to grow for future systems.

Nikoleris et al. [20] recently proposed an efficient method to warm
caches using fast statistical cache models based on StatStack [10]. We
are currently working on an implementation that collects the necessary
input data while executing the system in the virtual CPU. In the case
of large caches, the performance improvement is expected to be sub-
stantial. For example, when we simulated a 2MB cache, we needed to
execute in functional warming for 5M instructions. When simulating
an 8MB cache, we had to increase the functional warming to 25M in-
structions. Nikoleris et al. have shown that their method can be used
to accurately simulate systems with caches of at least 256MB while only
applying 100 k instructions of warming. Assuming a 2× overhead for
online profiling (StatStack profiling has been shown to be possible with
less than 40% overhead [2, 33, 41]) and 100 k instructions of functional
warming, we could potentially reach average simulation speeds of around
1GIPS (a 10× improvement for 8MB caches) on a single core for SPEC
CPU2006 regardless of cache size.

37

6 Summary

In today’s high-performance processors, an application’s performance
highly depends on how it uses the processor’s cache hierarchy. In a multi-
core processor where the last-level cache is shared, a single application’s
cache behavior can affect the throughput of every core sharing the cache.
In this thesis, we investigate methods to predict the behavior of applica-
tions sharing caches and how this impacts performance.

In Paper I, we demonstrated how low-overhead application profiles
can be used to detect instructions that bring data that is unlikely to be
reused into the cache and automatically modify the offending instruc-
tions to disable caching using existing hardware support. In order to rea-
son about the effects of cache optimizations, we developed a qualitative
application classification scheme. This classification scheme enables us
to predict which applications are affected by cache contention and which
are causing cache contention.

In order to quantify the performance of the shared last-level cache
in a multicore processor, we need to understand how it is shared. In
Paper II we demonstrated a cache model that uses high-level applica-
tion profiles to predict the steady-state behavior of applications sharing
a cache. The model predicts the amount of shared cache available to
each of the applications, their individual performance, and the memory
bandwidth required to reach that performance. When predicting cache
interactions on existing systems, our model uses profiles that we measure
with low overhead using existing hardware support. The same profiles
can be produced using a simulator when modeling future systems.

In Paper III, we extended the cache sharing model to applications
with time-varying behavior. When modeling such applications, it is no
longer sufficient to look at average performance since the achieved per-
formance is timing sensitive. Instead, we need to look at performance
distributions. Generating such distributions using simulation, or even by
running the applications on real hardware, has previously been too time
consuming to be practical. Our cache sharing model makes it possible
to generate them almost instantly.

Microarchitectural simulation is an important tool to understand the
behavior of current and future processors. However, the overhead of

39

contemporary detailed simulators is prohibitive and often limits the ex-
periments that can be performed. For example, in Paper I & II we used
simulation in the evaluation or as an important part of the pre-studies
leading to the research. This was no longer possible in Paper III due to
the simulation overhead and the larger time-scales needed to simulate
time-varying behaviors. Additionally, the methods from Paper II & III
would benefit from a fast simulator since it would enabled efficient gen-
eration of application profiles when modeling future systems.

In Paper IV we showed how hardware virtualization, detailed simu-
lation, and sampling can be combined to form an extremely fast simu-
lation framework. In its most basic form, our framework enables us to
fast-forward to a point of interest at 90% of the native execution rate
of the host machine. This enables us to implement an efficient sam-
pling simulator, where only a small number of instructions are simulated
in detail and the vast majority of the instructions are executed natively.
Since execution between samples is done natively, we reach new samples
much faster than a single sample can be simulated. This exposes sample-
level parallelism, which we exploit to further increase the performance
of the simulator by simulating multiple samples in parallel. Our parallel
sampling framework exhibits good scalability and scales almost linearly
to approximately 60% of the native execution rate. In our experiments,
that translated into an execution rate of 2GIPS, which is a 19 000× im-
provement over detailed simulation alone. Compared to a gem5-based
reference implementation of the SMARTS [46] sampling methodology,
we achieve a 1 500× performance improvement.

40

7 Svensk sammanfattning

För att kunna bygga och programmera effektiva datorsystem krävs detal-
jerad förståelse för hur olika designval påverkar hur systemet kommer att
bete sig som en helhet. Den här avhandlingen fokuserar på olika meto-
der för att effektivt modellera hur program som delar resurser påverkar
varandra i existerande datorsystem och hur denna påverkan kan minskas,
samt hur prestanda i nya datorsystem kan analyseras på ett effektivt sätt.

7.1 Bakgrund

Utvecklingen av datorer har gått extremt fort sedan introduktionen av de
första programmerbara elektroniska datorerna på 1940-talet. Inom en ge-
neration har vi upplevt en sällan skådad utveckling där datorer har gått
från stora specialbyggda maskiner som fyller hela rum (t.ex. den brittiska
Colossus som togs i drift 1944 för att knäcka det tyska Lorenz-kryptot)
till dagens ständigt uppkopplade mobila enheter som ryms i fickan. Den-
na utveckling har möjliggjorts av upptäkter i fysik och elektronik som
gett oss mycket små transistorer och integrerade kretsar. En modern pro-
cessor kan rymma runt 2 miljarder transistorer, medan en tidig dator som
Colossus innehöll motsvarande cirka 2 000 transistorer. I samband med
att vi får mer och mer avancerade byggstenar och verktyg har också kons-
ten att bygga datorer och datorsystem utvecklats till en egen disciplin,
datorarkitektur, som i mycket kan liknas vid traditionell arkitektur. En
datorarkitekt, likt en byggnadsarkitekt, sätter samman nya material och
komponenter (transistorer, minnesceller och logiska grindar) till en hel-
het som bildar ett fullt fungerande system.

Den grundläggande funktionen hos en datorprocessor består av att
hämta instruktioner och data från datorns primärminne samt att anting-
en manipulera data (binära tal) eller styra vilka instruktioner som ska
köras i framtiden. Tiden det tar att köra en instruktion begränsas av två
olika faktorer; tiden det tar att hämta data och instruktioner från primär-
minnet samt tiden det tar att utföra beräkningar. Hastigheten på dagens
processorer begränsas oftast av tiden det tar att komma åt datorns primär-
minne. Det gör att datorarkitekter ofta väljer att använda en stor andel
av transistorerna i en processor till att göra minnesåtkomster så effektiva

41

L
3

Processor

M
in

n
e
sko

n
tro

lle
r

Primärminne

DRAM

DRAM

DRAM

Delat cache-minnePrivata cache-minnen Delat primärminne

L1 L2Kärna

L1 L2Kärna

L1 L2Kärna

L1 L2Kärna

Figur 7.1: En modern processor innehåller flera olika kärnor som kan köra oberoende

instruktioner. För att minska åtkomsttiden till det långsamma primärminnet (s.k. DRAM

som nås via en minneskontroller) används en hierarki av små snabba cache-minnen

(L1–L3). Till skillnad från enkelkärniga processorer delas delar av processorn (här L3

och minneskontrollern) mellan kärnorna, även om kärnorna beter sig som självständiga

processorer.

som möjligt. För att minska tiden det tar att läsa och skriva till minnet
använder man en hierarki av små minnen (cache-minnen) som är olika
snabba. De snabbaste, men minst energi- och platseffektiva, sitter när-
mast de delar av processorn som utför själva beräkningarna, medan lång-
sammare, men mer energi- och platseffektiva, minnen sitter längre från
processorn. Detta gör att data som används ofta lagras närmare de delar
av processorn som använder dem och därför kan hämtas och manipuleras
snabbare än annan data.

I takt med att transistorerna blev fler och fler har det blivit svårare och
svårare att utnyttja dem effektivt. I början av 2000-talet insåg man att det
inte längre gick att göra en enskild processor snabbare på ett effektivt
sätt. Istället valde man att integrera flera processorer på samma krets.
Sådana ”processorer i processorn” kallas normalt kärnor (eng. core) och
bildar tillsammans en flerkärnig (eng. multicore) processor. Strukturen på
en sådan processor illustreras i Figure 7.1. I figuren ses fyra oberoende
processorkärnor som har två privata cache-minnen var (L1 & L2) och
ett delat cache-minne och primärminne. En processors olika kärnor kör
instruktioner helt oberoende av varandra, men kan kommunicera genom
datorns minne. Det betyder i praktiken att varje kärna kan köra ett eget
program eller att ett program kan använda flera kärnor för att köra fler
beräkningar samtidigt. Till skillnad från tidigare processorer är nu bl.a.
cache-minnena och anslutningen till minnet delade mellan olika program
som kör samtidigt. Det medför att två olika program som körs oberoende

42

K
än

sl
ig

h
e
t

Stökighet

perlbench

bzip2
gcc

bwaves

gamess

mcf

milc

zeusmp

leslie3d

soplex
hmmer

h264ref

lbm

astar

sphinx3

Xalan

libquantum

Okänsliga

Offer Cacheslukande offer

Cacheslukare

(a) Innan optimering

K
än

sl
ig

h
e
t

Stökighet

bwaves

milc

leslie3d

soplex

lbm

libquantum

Referens Optimerade

Okänsliga

Offer Cacheslukande offer

Cacheslukare

(b) Efter optimering

Figur 7.2: Klassificering med avseende på användning av delad cache för några vanliga

testprogram. De olika axlarna visar hur känsliga (y-axeln) programmen är för konkurens

och hur mycket de påverkar andra program (x-axeln). Program som slukar mycket

cache, höger sida av (a), kan göras snällare (b) genom att använda optimeringen vi

föreslog i Artikel I.

av varandra på två olika kärnor kan påverka varandras prestanda genom
att de konkurrerar om delade resurser i processorn. Att använda dessa
resurser effektivt och förstå hur de delas är alltså av stor vikt för att förstå
hur en modern processor beter sig.

7.2 Sammanfattning av forskningen

När man analyserar ett programs beteende med avseende på resursdel-
ning är det helt avgörande att både förstå hur programmet påverkar andra
och hur det påverkas av andra. I den här avhandlingen, som består av fyra
olika delarbeten, har vi undersökt hur programs beteende med fokus på
resursdelning och hur information om enskilda instruktioners beteende
kan användas för att optimera hur programmet beter sig. I avhandlingen
presenteras fyra olika delarbeten som fokuserar på olika aspekter kring
hur detta kan modelleras effektivt.

I Artikel I fokuserar vi framförallt på att kvalitativt beskriva vilka pro-
gram som påverkas av att köra med andra och vilka som påverkar andra.
Figur 7.2(a) visar hur klassificeringen ser ut för en uppsättning vanliga
testprogram. En programs position i x-led beskriver hur mycket den på-
verkar (”stökighet”) andra program, medan positionen i y-led indikerar

43

hur den påverkas av (”känslighet”) andra program. Man kan till exem-
pel utläsa att programmet libquantum har en tendens att kraftigt påverka
andra program, men påverkas inte av andra i någon större utsträckning.

Den statistiska modellen ger även information per instruktion. Utö-
ver att klassificera program använder vi denna information för att påver-
ka i var i cache-hierarkin data får befinna sig. Detta gör att vi kan ändra
många programs beteende och minska påverkan på andra. Detta kan ses
i Figure 7.2(b) där libquantum har gått från att vara en stökig cacheslukare
som bråkar med andra program till att vara relativt välartad.

Eftersom Artikel I enbart behandlar programs kvalitativa beteende
ställde vi oss frågan om vi kan kvantifiera detta och förutsäga programs
faktiska beteende. I Artikel II utvecklar vi en modell som kvantifierar ef-
fekterna av cache-delning mellan program som kör på olika kärnor. Istäl-
let för att bara förutsäga vilka program som kan ställa till problem för and-
ra program kan vår nyamodell avgöra hurmycket cache varje program får
tillgång till. Dessutom kan vi förutsäga vad det innebär för programmens
prestanda och hur det påverkar datamängden som måste hämtas från pri-
märminnet. För att svara på detta använder vår modell programprofiler
som vi kan mäta på riktiga datorsystem.

I Artikel II förutsatte vi att program har ett stabilt beteende som är
tidsoberoende. För att göra användbara förutsägelser på realistiska pro-
gram utökar vi i Artikel III vår cache-delningsmodell till tidsberoende
program. Den grundläggande fråga vi svarar på i detta fall är hur cachen
fördelas över tid. Det visar sig här att det egentligen inte rätt fråga att
ställa när beteendet varierar eftersom en liten skillnad i hur programmen
som körs (t.ex. om de inte startas samtidigt) kraftigt kan påverka deras
beteende. Därför undersöker vi även hur mycket ett programs prestanda
varierar när det delar cache med ett annat program. Det enklaste sät-
tet undersöka detta på vore att köra de program man är intresserad av
samtidigt flera gånger och mäta hur de beter sig, men detta är oftast för
tidskrävande (speciellt när antalet program är stort) för att vara praktiskt.
Vår modell beräknar samma information från körprofiler, som vi kan mä-
ta på existerande system, av programmen på under en hundradel av tiden
att köra dem.

I de inledande studierna till både Artikel I & II använde vi en relativt
detaljerad simulator1 för att djupare förstå systemet vi försökte modelle-
ra. I båda fallen såg vi att detaljerad simulering är mycket tidskrävande,
den totala simuleringstiden (mätt i tid det skulle ta för en kärna i en pro-
cessor att göra alla simuleringar) som har används för artiklarna i den
här avhandlingen är uppskattningsvis minst 5 år. I Artikel III var det in-
te längre möjligt att verifiera modellen med en simulator eftersom det

1En simulator är i det här fallet ett program som simulerar ett helt datorsystem,
inklusive komplicerade interaktioner i själva processorn.

44

skulle ha tagit för lång tid. I praktiken begränsas alltså vilka experiment
vi kan köra av simulatorn. Detta ledde till Artikel IV där vi undersöker
metoder för att effektivisera simulering. I denna studie presenterar vi en
snabb simuleringsmetod där vi uppskattar ett systems beteende genom
att simulera en liten del av instruktionerna i ett program i detalj. Genom
att köra majoriteten av instruktionerna på den riktiga processorn istället
för den simulerade kan vi uppskatta det simulerade systemets beteende
mycket snabbare än tidigare. Eftersom inte alla instruktioner simuleras
introducerar denna typ av simulering två nya felkällor: stickprovsfel och
fel på grund av felaktig data i stora strukturer som cacher. Tidigare har
man undvikit att göra denna typ av simulering eftersom man inte har
kunnat kvantifiera hur resultatet av cache-simuleringen påverkas på ett
effektivt sätt. I den här studien visar vi hur felet effektivt kan kvantifieras
och hur man kan parallellisera simularingen. Jämfört med detaljerad si-
mulering innebär vår metod nästan 19 000× förbättring, vilket möjliggör
helt nya typer av studier.

45

8 Acknowledgments

Many have played important parts in shaping me into the more indepen-
dent researcher I am today. I would like to start by thanking my advisor,
Erik Hagersten, who guided and focused a general interest in computer
architecture fromwhen I was a student in his computer architecture class
to when I was an employee in his start-up company, and finally as a PhD
student in his research group. You have taught me many things about
computer architecture in general and memory systems in particular. I
look forward to sailing with you again, Captain! My co-advisor, David
Black-Schaffer, for interesting discussions and excellent advice on how
to present research. Our research would never have been as understand-
able, and colorful, if it were not for the countless hours you spent revising
article drafts and presentations.

I would also like to thank all the members of the computer architec-
ture group for interesting discussion and ideas. David Eklöv for encour-
aging me to think critically about my own research. Nikos Nikoleris for
interesting technical discussions. Andreas Sembrant and Muneeb Khan
for fun and interesting collaborations. Stefanos Kaxiras for interesting dis-
cussions about coherence and power. Nina Shariati Nilsson for teaching
me new things about integrated circuits.

This thesis would have been considerably worse without the feed-
back I got from various people, you know who you are, on numerous
drafts. I would especially like to thank Magnus Själander for taking the
time to provide useful and detailed feedback. By virtue of being the
newest member of the group, he provided a much needed pair of fresh
eyes. Jessica Bergman and Jonathan Alvarsson, who by being researchers
in other fields, helped to make the Swedish popular science summary
understandable to people without a CS degree. Thank you!

Research is not just hard work and dusty rooms full of machines that
go “ping”; it is largely a social activity where new ideas are born and
old ideas die. Not all of these social interactions have lead to formal re-
search collaborations, but they have none the less been interesting and,
most importantly, fun. I would like to thank Alexandra Jimborean, Ger-
mán Ceballos, Konstantinos Koukos, Moncef Mechri, Ricardo Alves, and
Vasileios Spiliopoulos for fun and geeky discussions. Special thanks go to

47

Xiaoyue Pan for acting as the social glue across the division and arranging
the yearly Chinese New Year’s party. It has been fun!

The research presented in this thesis was made possible through gen-
erous financial support from the CoDeR-MP project and the UPMARC
research center. Computational infrastructure for reference simulations
was provided by the Swedish National Infrastructure for Computing
(SNIC) at Uppsala Multidisciplinary Center for Advanced Computa-
tional Science (UPPMAX), where several CPU year’s worth of simula-
tions chewed away in the background while we were having coffee. Ini-
tial work on hardware virtualization support in gem5 was sponsored by
ARM, where I would especially like to thank Matthew Horsnell, Ali G.
Saidi, Andreas Hansson, Marc Zyngier, and Will Deacon for interesting
discussions and insights. I am looking forward to working with you again!

There are others who, while not having had a direct impact on the
research itself, have made it possible. I would like to start by thanking
my parents and my grandparents, who treated me like their own son, for
encouraging me to ask questions about the world and fostering an inquis-
itive mind. And not to mention for putting up with that inquisitive mind
when it got too inquisitive, the years between learning to take things apart
and learning to put them back together must have been challenging… A
very special thank you goes to Jessica for her infinite love and support,
and for standing my somewhat irregular working hours throughout the
last year of my PhD. I would also like to thank the rest of my family and
all of my friends, you are all very important to me.

Last, but not least, I would like to thank Coffea arabica, the humble
coffee bean, for making (this) research possible.

48

9 References

[1] Eduardo Argollo, Ayose Falcón, Paolo Faraboschi, Matteo
Monchiero, and Daniel Ortega. “COTSon: Infrastructure for Full
System Simulation”. In: ACM SIGOPS Operating Systems Review
43.1 (Jan. 2009), pp. 52–61. DOI: 10.1145/1496909.1496921.

[2] Erik Berg and Erik Hagersten. “Fast Data-Locality Profiling of
Native Execution”. In: ACM SIGMETRICS Performance Evalua-
tion Review 33.1 (2005), pp. 169–180. DOI: 10.1145/1071690.
1064232.

[3] Erik Berg and Erik Hagersten. “StatCache: A Probabilistic Ap-
proach to Efficient and Accurate Data Locality Analysis”. In: Proc.
International Symposium on Performance Analysis of Systems & Soft-
ware (ISPASS). 2004, pp. 20–27. DOI: 10.1109/ISPASS.2004.
1291352.

[4] Nathan Binkert, Somayeh Sardashti, Rathijit Sen, Korey Sewell,
Muhammad Shoaib, Nilay Vaish, Mark D. Hill, David A. Wood,
Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, and Tushar
Krishna. “The gem5 Simulator”. In: ACM SIGARCH Computer
Architecture News 39.2 (Aug. 2011). DOI: 10 . 1145 / 2024716 .
2024718.

[5] Dhruba Chandra, Fei Guo, Seongbeom Kim, and Yan Solihin.
“Predicting Inter-Thread Cache Contention on a Chip Multi-
Processor Architecture”. In: Proc. International Symposium on
High-Performance Computer Architecture (HPCA). 2005. DOI: 10.
1109/HPCA.2005.27.

[6] Shelley Chen. “Direct SMARTS: Accelerating Microarchitectural
Simulation through Direct Execution”. MA thesis. Carnegie Mel-
lon University, 2004.

[7] Xi E. Chen and TorM. Aamodt. “A First-Order Fine-GrainedMul-
tithreaded Throughput Model”. In: Proc. International Symposium
on High-Performance Computer Architecture (HPCA). 2009. DOI:
10.1109/HPCA.2009.4798270.

49

http://dx.doi.org/10.1145/1496909.1496921
http://dx.doi.org/10.1145/1071690.1064232
http://dx.doi.org/10.1145/1071690.1064232
http://dx.doi.org/10.1109/ISPASS.2004.1291352
http://dx.doi.org/10.1109/ISPASS.2004.1291352
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1109/HPCA.2005.27
http://dx.doi.org/10.1109/HPCA.2005.27
http://dx.doi.org/10.1109/HPCA.2009.4798270

[8] Xi E. Chen and Tor M. Aamodt. “Modeling Cache Contention
and Throughput of Multiprogrammed Manycore Processors”. In:
IEEE Transactions on Computers PP.99 (2011). DOI: 10.1109/TC.
2011.141.

[9] David Eklov, David Black-Schaffer, and Erik Hagersten. “Fast
Modeling of Cache Contention in Multicore Systems”. In: Proc.
International Conference on High Performance and Embedded Ar-
chitecture and Compilation (HiPEAC). 2011, pp. 147–157. DOI:
10.1145/1944862.1944885.

[10] David Eklov and Erik Hagersten. “StatStack: Efficient Modeling
of LRU Caches”. In: Proc. International Symposium on Performance
Analysis of Systems & Software (ISPASS). Mar. 2010, pp. 55–65.
DOI: 10.1109/ISPASS.2010.5452069.

[11] David Eklov, Nikos Nikoleris, David Black-Schaffer, and Erik
Hagersten. “Cache Pirating: Measuring the Curse of the Shared
Cache”. In: Proc. International Conference on Parallel Processing
(ICPP). 2011, pp. 165–175. DOI: 10.1109/ICPP.2011.15.

[12] Ayose Falcón, Paolo Faraboschi, and Daniel Ortega. “Combining
Simulation and Virtualization through Dynamic Sampling”. In:
Proc. International Symposium on Performance Analysis of Systems
& Software (ISPASS). Apr. 2007, pp. 72–83. DOI: 10 . 1109 /
ISPASS.2007.363738.

[13] Aamer Jaleel, William Hasenplaugh, Moinuddin Qureshi, Julien
Sebot, Jr Simon Steely, and Joel Emer. “Adaptive Insertion Policies
for Managing Shared Caches”. In: Proc. International Conference on
Parallel Architectures and Compilation Techniques (PACT). 2008,
pp. 208–219. DOI: 10.1145/1454115.1454145.

[14] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely Jr., and
Joel Emer. “High Performance Cache Replacement Using Re-
Reference Interval Prediction (RRIP)”. In: Proc. International Sym-
posium on Computer Architecture (ISCA). 2010, pp. 60–71. DOI:
10.1145/1815961.1815971.

[15] Muneeb Khan, Andreas Sandberg, and Erik Hagersten. “A Case
for Resource Efficient Prefetching in Multicores”. In: Proc. Inter-
national Symposium on Performance Analysis of Systems & Software
(ISPASS). 2014, pp. 137–138.

[16] Avi Kivity, Uri Lublin, and Anthony Liguori. “kvm: the Linux Vir-
tualMachineMonitor”. In: Proc. Linux Symposium. 2007, pp. 225–
230.

50

http://dx.doi.org/10.1109/TC.2011.141
http://dx.doi.org/10.1109/TC.2011.141
http://dx.doi.org/10.1145/1944862.1944885
http://dx.doi.org/10.1109/ISPASS.2010.5452069
http://dx.doi.org/10.1109/ICPP.2011.15
http://dx.doi.org/10.1109/ISPASS.2007.363738
http://dx.doi.org/10.1109/ISPASS.2007.363738
http://dx.doi.org/10.1145/1454115.1454145
http://dx.doi.org/10.1145/1815961.1815971

[17] John D. C. Little. “A Proof for the Queuing Formula: L = 𝜆 W”.
In: Operations Research 9.3 (1961), pp. 383–387.

[18] Richard L. Mattson, Jan Gecsei, Donald R. Slutz, and Irving L.
Traiger. “Evaluation techniques in storage hierarchies”. In: IBM
Journal of Research and Development 9.2 (1970), pp. 78–117.

[19] Jason E. Miller, Harshad Kasture, George Kurian, Charles Gru-
enwald, Nathan Beckmann, Christopher Celio, Jonathan Eastep,
and Anant Agarwal. “Graphite: A Distributed Parallel Simula-
tor for Multicores”. In: Proc. International Symposium on High-
Performance Computer Architecture (HPCA). Jan. 2010, pp. 1–12.
DOI: 10.1109/HPCA.2010.5416635.

[20] Nikos Nikoleris, David Eklov, and Erik Hagersten. “Extending Sta-
tistical Cache Models to Support Detailed Pipeline Simulators”.
In: Proc. International Symposium on Performance Analysis of Sys-
tems & Software (ISPASS). 2014.

[21] Pavlos Petoumenos, Georgios Keramidas, and Stefanos Kaxiras.
“Instruction-based Reuse-Distance Prediction for Effective Cache
Management”. In: Proc. Symposium on Systems, Architectures, Mod-
eling, and Simulation (SAMOS). 2009, pp. 49–58. DOI: 10.1109/
ICSAMOS.2009.5289241.

[22] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C.
Steely, and Joel Emer. “Adaptive Insertion Policies for High Perfor-
mance Caching”. In: Proc. International Symposium on Computer
Architecture (ISCA). San Diego, California, USA: ACM, 2007,
pp. 381–391. DOI: 10.1145/1250662.1250709.

[23] Steven K. Reinhardt, Mark D. Hill, James R. Larus, Alvin R.
Lebeck, James C. Lewis, and David A. Wood. “The Wisconsin
Wind Tunnel: Virtual Prototyping of Parallel Computers”. In:
ACM SIGMETRICS Performance Evaluation Review 21.1 (June
1993), pp. 48–60. DOI: 10.1145/166962.166979.

[24] M. Rosenblum, S.A. Herrod, E. Witchel, and A. Gupta. “Com-
plete Computer System Simulation: The SimOS Approach”. In:
Parallel & Distributed Technology: Systems & Applications 3.4 (Jan.
1995), pp. 34–43. DOI: 10.1109/88.473612.

[25] Frederick Ryckbosch, Stijn Polfliet, and Lieven Eeckhout. “VSim:
Simulating Multi-Server Setups at Near Native Hardware Speed”.
In: ACM Transactions on Architecture and Code Optimization
(TACO) 8 (2012), 52:1–52:20. DOI: 10.1145/2086696.2086731.

51

http://dx.doi.org/10.1109/HPCA.2010.5416635
http://dx.doi.org/10.1109/ICSAMOS.2009.5289241
http://dx.doi.org/10.1109/ICSAMOS.2009.5289241
http://dx.doi.org/10.1145/1250662.1250709
http://dx.doi.org/10.1145/166962.166979
http://dx.doi.org/10.1109/88.473612
http://dx.doi.org/10.1145/2086696.2086731

[26] Andreas Sandberg, David Black-Schaffer, and Erik Hagersten.
“A Simple Statistical Cache Sharing Model for Multicores”. In:
Proc. Swedish Workshop on Multi-Core Computing (MCC). 2011,
pp. 31–36.

[27] Andreas Sandberg, David Black-Schaffer, and Erik Hagersten. “Ef-
ficient Techniques for Predicting Cache Sharing and Throughput”.
In: Proc. International Conference on Parallel Architectures and Com-
pilation Techniques (PACT). 2012, pp. 305–314. DOI: 10.1145/
2370816.2370861.

[28] Andreas Sandberg, David Eklöv, and Erik Hagersten. “A Software
Technique for Reducing Cache Pollution”. In: Proc. Swedish Work-
shop on Multi-Core Computing (MCC). 2010, pp. 59–62.

[29] Andreas Sandberg, David Eklöv, and Erik Hagersten. “Reduc-
ing Cache Pollution Through Detection and Elimination of Non-
Temporal Memory Accesses”. In: Proc. High Performance Comput-
ing, Networking, Storage and Analysis (SC). 2010. DOI: 10.1109/
SC.2010.44.

[30] Andreas Sandberg, Erik Hagersten, and David Black-Schaffer. Full
Speed Ahead: Detailed Architectural Simulation at Near-Native
Speed. Tech. rep. 2014-005. Department of Information Technol-
ogy, Uppsala University, Mar. 2014.

[31] Andreas Sandberg and Stefanos Kaxiras. “Efficient Detection of
Communication in Multi-Cores”. In: Proc. Swedish Workshop on
Multi-Core Computing (MCC). 2009, pp. 119–121.

[32] Andreas Sandberg, Andreas Sembrant, David Black-Schaffer, and
Erik Hagersten. “Modeling Performance Variation Due to Cache
Sharing”. In: Proc. International Symposium on High-Performance
Computer Architecture (HPCA). 2013, pp. 155–166. DOI: 10 .
1109/HPCA.2013.6522315.

[33] Andreas Sembrant, David Black-Schaffer, and Erik Hagersten.
“Phase Guided Profiling for Fast Cache Modeling”. In: Proc. Inter-
national Symposium on Code Generation and Optimization (CGO).
2012, pp. 175–185. DOI: 10.1145/2259016.2259040.

[34] Andreas Sembrant, David Eklov, and Erik Hagersten. “Efficient
Software-based Online Phase Classification”. In: Proc. Interna-
tional Symposium on Workload Characterization (IISWC). 2011,
pp. 104–115. DOI: 10.1109/IISWC.2011.6114207.

[35] Rathijit Sen and David A. Wood. “Reuse-based Online Models
for Caches”. In: ACM SIGMETRICS Performance Evaluation Re-
view 41.1 (June 2013), pp. 279–292. DOI: 10.1145/2494232.
2465756.

52

http://dx.doi.org/10.1145/2370816.2370861
http://dx.doi.org/10.1145/2370816.2370861
http://dx.doi.org/10.1109/SC.2010.44
http://dx.doi.org/10.1109/SC.2010.44
http://dx.doi.org/10.1109/HPCA.2013.6522315
http://dx.doi.org/10.1109/HPCA.2013.6522315
http://dx.doi.org/10.1145/2259016.2259040
http://dx.doi.org/10.1109/IISWC.2011.6114207
http://dx.doi.org/10.1145/2494232.2465756
http://dx.doi.org/10.1145/2494232.2465756

[36] Timothy Sherwood, Brad Calder, and Joel Emer. “Reducing Cache
Misses Using Hardware and Software Page Placement”. In: Proc.
International Conference on Supercomputing (ICS). Rhodes, Greece,
1999, pp. 155–164. DOI: 10.1145/305138.305189.

[37] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad
Calder. “Automatically Characterizing Large Scale Program Be-
havior”. In: Proc. Internationla Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS).
2002, pp. 45–57. DOI: 10.1145/605397.605403.

[38] Gary Tyson, Matthew Farrens, John Matthews, and Andrew R.
Pleszkun. “A Modified Approach to Data Cache Management”.
In: Proc. Annual International Symposium on Microarchitecture (MI-
CRO). 1995, pp. 93–103. DOI: 10.1109/MICRO.1995.476816.

[39] Michael Van Biesbrouck, Timothy Sherwood, and Brad Calder. “A
Co-Phase Matrix to Guide Simultaneous Multithreading Simula-
tion”. In: Proc. International Symposium on Performance Analysis of
Systems & Software (ISPASS). 2004, pp. 45–56. DOI: 10.1109/
ISPASS.2004.1291355.

[40] Kenzo Van Craeynest and Lieven Eeckhout. “The Multi-Program
Performance Model: Debunking Current Practice in Multi-Core
Simulation”. In: Proc. International Symposium on Workload Char-
acterization (IISWC). 2011, pp. 26–37. DOI: 10 . 1109 / IISWC .
2011.6114194.

[41] Peter Vestberg. “Low-Overhead Memory Access Sampler: An Ef-
ficient Method for Data-Locality Profiling”. MA thesis. Uppsala
University, 2011.

[42] Zhenlin Wang, McKinley Kathryn S., Arnold L. Rosenberg, and
Weems Charles C. “Using the Compiler to Improve Cache Re-
placement Decisions”. In: Proc. International Conference on Parallel
Architectures and Compilation Techniques (PACT). 2002, pp. 199–
208. DOI: 10.1109/PACT.2002.1106018.

[43] Thomas F. Wenisch, Roland E. Wunderlich, Babak Falsafi, and
James C. Hoe. “TurboSMARTS: Accurate Microarchiteecture
Simulation Sampling in Minutes”. In: ACM SIGMETRICS Perfor-
mance Evaluation Review 33.1 (June 2005), pp. 408–409. DOI:
10.1145/1071690.1064278.

[44] Thomas F. Wenisch, Roland E. Wunderlich, Michael Ferdman,
Anastassia Ailamaki, Babak Falsafi, and James C. Hoe. “SimFlex:
Statistical Sampling of Computer System Simulation”. In: IEEE
Micro 26.4 (July 2006), pp. 18–31. DOI: 10.1109/MM.2006.79.

53

http://dx.doi.org/10.1145/305138.305189
http://dx.doi.org/10.1145/605397.605403
http://dx.doi.org/10.1109/MICRO.1995.476816
http://dx.doi.org/10.1109/ISPASS.2004.1291355
http://dx.doi.org/10.1109/ISPASS.2004.1291355
http://dx.doi.org/10.1109/IISWC.2011.6114194
http://dx.doi.org/10.1109/IISWC.2011.6114194
http://dx.doi.org/10.1109/PACT.2002.1106018
http://dx.doi.org/10.1145/1071690.1064278
http://dx.doi.org/10.1109/MM.2006.79

[45] Wayne A. Wong and Jaen-Loup Baer. “Modified LRU Policies for
Improving Second-Level Cache Behavior”. In: Proc. International
Symposium on High-Performance Computer Architecture (HPCA).
2000, pp. 49–60. DOI: 10.1109/HPCA.2000.824338.

[46] Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and
James C. Hoe. “SMARTS: Accelerating Microarchitecture Simula-
tion via Rigorous Statistical Sampling”. In: Proc. International Sym-
posium on Computer Architecture (ISCA). 2003, pp. 84–95. DOI:
10.1109/ISCA.2003.1206991.

[47] Xiaoya Xiang, Bin Bao, Tongxin Bai, Chen Ding, and Trishul
Chilimbi. “All-Window Profiling and Composable Models of
Cache Sharing”. In: Proc. Symposium on Principles and Practice of
Parallel Programming (PPoPP). 2011. DOI: 10 . 1145 / 1941553 .
1941567.

[48] Chi Xu, Xi Chen, Robert P. Dick, and Zhuoqing Morley Mao.
“Cache Contention and Application Performance Prediction for
Multi-Core Systems”. In: Proc. International Symposium on Perfor-
mance Analysis of Systems & Software (ISPASS). 2010. DOI: 10.
1109/ISPASS.2010.5452065.

[49] Matt T. Yourst. “PTLsim: A Cycle Accurate Full System x86-64
Microarchitectural Simulator”. In: Proc. International Symposium
on Performance Analysis of Systems & Software (ISPASS). Apr.
2007, pp. 23–34. DOI: 10.1109/ISPASS.2007.363733.

54

http://dx.doi.org/10.1109/HPCA.2000.824338
http://dx.doi.org/10.1109/ISCA.2003.1206991
http://dx.doi.org/10.1145/1941553.1941567
http://dx.doi.org/10.1145/1941553.1941567
http://dx.doi.org/10.1109/ISPASS.2010.5452065
http://dx.doi.org/10.1109/ISPASS.2010.5452065
http://dx.doi.org/10.1109/ISPASS.2007.363733

Acta Universitatis Upsaliensis
Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1136

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and
Technology, Uppsala University, is usually a summary of a
number of papers. A few copies of the complete dissertation
are kept at major Swedish research libraries, while the
summary alone is distributed internationally through
the series Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology.
(Prior to January, 2005, the series was published under the
title “Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-220652

ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2014

PAPER I

Reducing Cache Pollution

Through Detection and

Elimination of Non-Temporal

Memory Accesses

Andreas Sandberg

David Eklöv

Erik Hagersten

©2010 IEEE. Reprinted, with permission, from SC’10, November 13–19, 2010.

DOI: 10.1109/SC.2010.44

http://dx.doi.org/10.1109/SC.2010.44

Abstract— Contention for shared cache resources has been recognized
as a major bottleneck for multicores—especially for mixed workloads
of independent applications. While most modern processors implement
instructions to manage caches, these instructions are largely unused due
to a lack of understanding of how to best leverage them.

This paper introduces a classification of applications into four cache
usage categories. We discuss how applications from different categories
affect each other’s performance indirectly through cache sharing and de-
vise a scheme to optimize such sharing. We also propose a low-overhead
method to automatically find the best per-instruction cachemanagement
policy.

We demonstrate how the indirect cache-sharing effects of mixed
workloads can be tamed by automatically altering some instructions to
better manage cache resources. Practical experiments demonstrate that
our software-only method can improve application performance up to
35% on x86 multicore hardware.

1 Introduction

The introduction of multicore processors has significantly changed the
landscape for most applications. The literature has mostly focused on
parallel multithreaded applications. However, multicores are often used
to run several independent applications. Such mixed workloads are com-
mon in a wide range of systems, spanning from cell phones to HPC
servers. HPC clusters often run a large number of serial applications
in parallel across their physical cores. For example, parameter studies in
science and engineering where the same application is run with different
input data sets.

When an application shares a multicore with other applications,
new types of performance considerations are required for good system
throughput. Typically, the co-scheduled applications share resources
with limited capacity and bandwidth, such as a shared last-level cache
(SLLC) and DRAM interfaces. An application overusing any of these
resources can degrade the performance of the other applications sharing
the same multicore chip.

Consider a simple example: Application A has an active working set
that barely fits in the SLLC, and application B makes a copy of a data
structure much larger than the SLLC. When run together, B will use a
large portion of the SLLC and will force A to miss much more often than
when run in isolation. Fortunately, most libraries implementing mem-
ory copying routines, e.g. memcpy, have been hand-optimized and use
special cache-bypass instructions, such as non-temporal reads and writes.

58

On most implementations, these instructions will avoid allocation of re-
sources in the SLLC and subsequently will not force any replacements
of application A’s working set in the cache.

In the example above the use of cache bypass instructions may seem
obvious, and hand-tuning a common routine, such as memcpy, may mo-
tivate the use of special assembler instructions. However, many common
programs also have memory accesses that allocate data with little benefit
in the SLLC and may slow down co-scheduled applications. Detecting
such reckless use is beyond the capability of most application program-
mers, as is the use of assembly coding. Ideally, both the detection and
cache-bypassing should be done automatically using existing hardware
support.

Several software techniques for managing caches have been proposed
in the past [9, 11–13]. However, most of these methods require an ex-
pensive simulation analysis. These techniques assume the existence of
heavily specialized instructions [11, 12], or extensions to the cache state
and replacement policy [13], none of which can be found in today’s pro-
cessors. Several researchers have proposed hardware improvements to
the LRU replacement algorithm [3, 4, 6, 7]. In general, such algorithms
tweak the LRU order by including additional predictions about future
re-references. Others have tried to predict [14] and quantify [10] inter-
ference due to cache sharing.

In this paper, we propose an efficient and practical software-only
technique to automatically manage cache sharing to improve the perfor-
mance of mixed workloads of common applications running on existing
x86 hardware. Unlike previously proposed methods, our technique does
not rely on any hardware modifications and can be applied to existing
applications running on commodity hardware. This paper makes the fol-
lowing contributions:

• We propose a scheme to classify applications according to their
impact, and dependence, on the SLLC.

• We propose an automatic and low-overhead method to find in-
structions that use the SLLC recklessly and automatically intro-
duce cache bypass instructions into the binary.

• We demonstrate how this technique can change the classification
of many applications, making them better mixed workload citizens.

• We evaluate the performance gain of the applications and show
that their improved behavior is in agreement with the classification.

59

0%

5%

10%

15%

20%

25%

30%

Private Private+SLLC

M
is

s
R

at
io

Cache Size

Streaming
Non-streaming

Together
Isolation

Figure 1: Miss ratio as a function of cache size for an application with streaming be-

havior and a typical non-streaming application that reuses most of its data. When run

in isolation, each application has access to both the private cache and the entire SLLC.

Running together causes the non-streaming application to receive a small fraction of

the SLLC, while the streaming application receives a large fraction without decreasing

its miss ratio. The change in perceived cache size and miss ratio is illustrated by the

arrows.

2 Managing caches in software

Application performance on multicores is highly dependent on the ac-
tivities of the other cores in the same chip due to contention for shared
resources. In most modern processors there is no explicit hardware pol-
icy to manage these shared resources. However, there are usually in-
structions to manage these resources in software. By using these instruc-
tions properly, it is possible to increase the amount of data that is reused
through the cache hierarchy. However, this requires being able to pre-
dict which applications, and which instructions, benefit from caching and
which do not.

In order to know which application would benefit from using more
of the shared cache resources, we need to know the applications’ cache
usage characteristics. The cache miss ratio as a function of cache size, i.e.
the number of cache misses as a fraction of the total number of mem-
ory accesses as a function of cache size, is a useful metric to determine
such characteristics. Figure 1 shows the miss ratio curves for a typical
streaming application and an application that reuses its data. The miss
ratio of the non-streaming application decreases as the amount of avail-
able cache increases. This occurs because more of the data set fits in the
cache. Since the streaming application does not reuse its data, the miss
ratio stays constant even when the cache size is increased.

When the applications are run in isolation, they will get access to both
the core-local private cache and the SLLC. Assuming that the cache hi-
erarchy is exclusive, the amount of cache available to an application run-

60

𝑟𝑠

𝑟𝑝

Private Private+SLLC

M
is

s
R

at
io

Cache Size

𝛿

Figure 2: A generalized miss ratio curve for an application. The minimum, i.e. only

the private cache, and the maximum, i.e. the private cache and the full shared cache,

amount of cache available to an application are shown on the x-axis. The miss ratio

when running in isolation (𝑟𝑠) is the smallest miss ratio that an application can achieve

on this system, while the miss ratio when running only in the private cache (𝑟𝑝) is the

worst miss ratio. The 𝛿 represents how much an application is affected by competition

for the shared cache.

ning in isolation is the sum of the private cache and the SLLC. When
two applications share the cache, they will perceive the SLLC as being
smaller. In the case illustrated by Figure 1, the streaming application
misses much more frequently than the non-streaming application. The
frequent misses causes the streaming application to install more data in
the cache than the non-streaming application. The non-streaming ap-
plication will therefore perceive the cache as being much smaller than
when run in isolation. The change in perceived cache size, and how this
affects miss ratio is illustrated by the arrows in Figure 1.

Decreasing the perceived cache size for the streaming application
does not affect its miss ratio. The non-streaming application, however,
sees an increased miss ratio when access to the SLLC is restricted. As
the number of misses increase, the bandwidth requirements also increase,
which affects the performance of all the applications sharing the same
memory interface. If we could make sure that the streaming application
does not install any of its streaming data into the cache, the miss ratio,
and bandwidth requirement, of the non-streaming applications would
decrease without sacrificing any performance. In fact, the streaming ap-
plication would run faster since the total bandwidth requirement would
be decreased.

Using the miss ratio curves we can classify applications based on how
they affect others and how they are affected by competition for the
shared cache. We base this classification on the base miss ratio, 𝑟𝑠, when
the application is run in isolation and has access to both its private cache

61

0.001%

0.01%

0.1%

1%

10%

0.01% 0.1% 1% 10% 100%

C
ac

h
e

S
e
n
si

ti
vi

ty
(𝛿

)

Base Miss Ratio (𝑟𝑠)

perlbench

bzip2
gcc

bwaves

gamess

mcf

milc

zeusmp

leslie3d

soplex
hmmer

h264ref

lbm

astar

sphinx3

Xalan

libquantum

Don’t Care

Victims Gobblers & Victims

Cache Gobblers

Figure 3: Classification map of a subset of the SPEC2006 benchmarks running with

the reference input set on a system with a 576 kB private cache and 6 MB shared cache.

The quadrants signify different behaviors when running together with other applications.

Applications to the left tend to reuse almost all of their data in the shared cache and

generally work well with other applications, applications to the right tend to use large

parts of the shared cache for data that is never reused and are generally troublesome in

mixes with other applications. Applications in the upper half are sensitive to the amount

of data that can be stored in the shared cache, while applications on the bottom are

insensitive.

and the entire SLLC, and the miss ratio, 𝑟𝑝, when it only has access to
the private cache, see Figure 2. The 𝑟𝑝 miss ratio can be thought of as the
maximum miss ratio that an application can get due to cache contention,
while 𝑟𝑠 is the ideal case when the application is run in isolation. To cap-
ture the sensitivity to cache contention we define the cache sensitivity,
𝛿, to be the difference between the two miss ratios. A large 𝛿 indicates
that an application benefits from using the shared cache, while a small
𝛿 means that the application exhibits streaming behavior and does not
benefit from additional cache resources.

Using the rs and 𝛿 we can classify applications based on how they use
the cache. This classification allows us to predict how applications will

62

affect each other and how the system will be affected by software cache
management. We define the following categories:

Don’t Care
Small rs and small 𝛿—Applications that are largely unaffected by
contention for the shared cache level. These applications fit their
entire data set in the private cache, they are therefore largely unaf-
fected by contention for the shared cache and memory bandwidth.

Victims
Small rs and large 𝛿—Applications that suffer badly if the amount
of cache at the shared level is restricted. The data they manage to
install in the shared resource is almost always reused. Applications
with a working set larger than the private cache, but smaller than
the total cache size belong in this category.

Gobblers & Victims
Large rs and large 𝛿—Applications that suffer from SLLC cache
contention, but store large amounts of data that is never reused
in the shared cache. For example, applications traversing a small
and a large data structure in parallel may reuse data in the cache
when accessing the small structure, while accesses to the large data
structure always miss. Disabling caching for the accesses to the
large data structure would allow more of the smaller data structure
to be cached. Managing the cache for these applications is likely to
improve throughput, both when they are running in isolation and
in a mix with other applications.

Cache Gobblers
Large rs and small 𝛿—Applications that do not benefit from the
shared cache at all, but still install large amounts of data in it. Ap-
plications in this category work on streaming data or data struc-
tures that are much larger than the cache. These applications are
good candidates for software cachemanagement. Since they do not
reuse the data they install in the shared cache, their throughput is
generally not improved when running in isolation. Managing these
applications will improve the full system throughput by allowing
applications from other categories to use more of the shared cache.

Figure 3 shows the classification of several SPEC2006 benchmarks
according to these categories. Applications classified as wasting cache re-
sources, i.e. applications on the right-hand side of the map, are obvious
targets for cache management. The large base miss ratio in such appli-
cations is due to memory accesses that touch data that is never reused

63

while it resides in the cache. Disabling caching for such instructions does
not introduce new misses since data is not reused, instead it will free up
cache space for other accesses.

3 Cache management instructions

Most modern instruction sets include instructions to manage caches.
These instructions can typically be classified into three different cat-
egories: non-temporal memory accesses, forced cache eviction and non-
temporal prefetches. Many processors support at least one of these in-
struction classes. However, their semantics may not always make them
suitable for cache management for performance.

Examples from the first category are the memory accesses in the PA-
RISC which can be annotated with caching hints, e.g. only spatial lo-
cality or write only. Similar instruction annotations exist for Itanium.
Other instruction sets, such as some of the SIMD extensions to the x86,
contain completely separate instructions for handling non-temporal data.
The hardware may, based on these hints, decide not to install write-only
cache lines in the cache and use write-combining buffers instead. Non-
temporal reads can be handled using separate non-temporal buffers or
by installing the accessed cache line in such a way that it is the next line
to be evicted from a set.

Instructions from the second category, forced cache eviction, appear in
some form in most architectures. However, not all architectures expose
such instructions to user space. Yet other implementations may have un-
desired semantics that limit their usefulness in code optimizations, e.g.
the x86 Flush Cache Line (CLFLUSH) instruction forces all caches in a
coherence domain to be flushed. There are some architectures that im-
plement instructions in this class that are specifically intended for code
optimizations. For example, the Alpha ISA specifies an instruction, Evict
Data Cache Block (ECB), that gives the memory system a hint that a spe-
cific cache line will not be reused in the near future. A similar instruction,
Write Hint (WH64), tells the memory subsystem that an entire cache line
will be overwritten before being read again, this allows the memory sys-
tem to allocate the cache line without actually reading its old contents.
The ECB and WH64 instructions are in many ways similar to the caching
hints in the previous category, but instead of annotating the load or store
instruction, the hints are given after or, in case of a store, before the
memory accesses in question.

The third category, non-temporal prefetches, is also included in sev-
eral different ISAs. The SPARC ISA has both read and write prefetch

64

variants for data that is not temporally reused. Similar prefetch instruc-
tions are also available in both Itanium and x86. Some implementations
may choose to prefetch into the cache such that the fetched line is the
next to be evicted from that set; others may prevent the data from prop-
agating from the L1 to a higher level in the cache hierarchy.

In the remainder of this paper, we will assume an architecture with
a non-temporal hint that is implemented such that non-temporal data is
fetched into the L1 cache, but never installed in higher levels. This is
how the AMD system we target implement support for non-temporal
prefetches.

4 Low-overhead cache modeling

A natural starting point for modeling LRU caches is the stack distance [5].
A stack distance is the number of unique cache lines accessed between
two successive memory accesses to the same cache line. It can be directly
used to determine if a memory access results in a cache hit or a cache
miss for a fully-associative LRU cache: if the stack distance is less than
the cache size, the access will be a hit, otherwise it will miss. Therefore,
the stack distance distribution enables the application’s miss ratio to be
computed for any given cache size, by simply computing the fraction of
memory accesses with a stack distances greater than the desired cache
size.

In this work, we need to differentiate between what we call back-
ward and forward stack distance. Let A and B be two successive memory
accesses to the same cache line. Suppose that there are 𝑆 unique cache
lines accessed by the memory accesses executed between A and B. Here,
we say that A has a forward stack distance of 𝑆, and that B has a backward
stack distance of 𝑆.

Measuring stack distances is generally very expensive. In this paper,
we use StatStack [2] to estimate stack distances andmiss ratios. StatStack
is a statistical cache model that models fully associative caches with LRU
replacement. Modeling fully associative LRU caches is, for most appli-
cations, a good approximation of the set associative pseudo LRU caches
implemented in hardware. StatStack estimates an application’s stack dis-
tances using only a sparse sample of the application’s reuse distances, i.e.
the number of memory accesses performed between two accesses to the
same cache line. This approach to modeling caches has been shown to be
several orders of magnitude faster than full cache simulation, and almost
as accurate. The runtime profile of an application can be collected with
an overhead of only 40% [1], and the execution time of the cache model
is only a few seconds [2].

65

A B BA

Out Boundary

B DC C DC

Figure 4: Reuse distance in a memory access stream. The arcs connect successive

memory accesses to the same cache line, and represents the reuse of cache lines. The

stack distance of the second memory access to A is equal to the number of arcs that

cross “Out Boundary”.

To understand how StatStack works, consider the access sequence
shown in Figure 4. Here the arcs connect subsequent accesses to the
same cache line, and represent the reuse of data. In this example, the
second memory access to cache line A has a reuse distance of five, since
there are five memory accesses executed between the two accesses to A,
and a backward stack distance of three, since there are three unique cache
lines (B, C and D) accessed between the two accesses to A. Furthermore,
we see that there are three arcs that cross the vertical line labeled “Out
Boundary”, which is the same as the stack distance of the second access
to A. This observation holds true in general. Based on it we can compute
the stack distance of any memory access, given that we know the reuse
distances of all memory access performed between it and the previous
access to the same cache line.

The input to StatStack is a sparse reuse distance sample that only con-
tains the reuse distances of a sparse random selection of an application’s
memory accesses, and therefore does not contain enough information for
the above observation to be directly applied. Instead, StatStack uses the
reuse distance sample to estimate the application’s reuse distance distri-
bution. This distribution is then used to estimate the likelihood that a
memory access has a reuse distance greater than a given length. Since
the length of a reuse distance determines if its outbound arc reaches be-
yond the “Out Boundary”, we can use these likelihoods to estimate the
stack distance of any memory access. For example, to estimate the stack
distance of the second access to A in Figure 4, we sum the estimated like-
lihoods that the reuse distance of thememory accesses executed between
the two accesses to A have reuse distances such that their corresponding
arcs reach beyond “Out Boundary”.

StatStack uses this approach to estimate the stack distances of all
memory accesses in a reuse distance sample, effectively estimating a stack
distance distribution. StatStack uses this distribution to estimate the

66

miss ratio for any given cache size, 𝐶, as the fraction of stack distances
in the estimated stack distance distribution that are greater than 𝐶.

5 Identifying non-temporal accesses

Using the stack distance profile of an application we can determine which
memory accesses do not benefit from caching. We will refer to memory
accessing instructions whose data is never reused during its lifetime in
the cache hierarchy as non-temporal memory accesses.

If these non-temporal accesses can be identified, the compiler, a post
processing pass, or a dynamic instrumentation engine can alter the appli-
cation to use non-temporal instructions in these locations without hurt-
ing performance.

The system we model implements a non-temporal hint that causes a
cache line to be installed in the L1, but never in any of the higher cache
levels. It turns out that modeling this system is fairly complicated, we
will therefore describe our algorithm to find non-temporal accesses in
three steps. Each step adds more detail to the model and brings it closer
to the hardware. A fourth step is included to take effects from sampled
stack distances into account.

A first simplified approach

By looking at the forward stack distances of an instruction we can easily
determine if the next access to the data used by that instruction will
be a cache miss, i.e. the instruction is non-temporal. An instruction has
non-temporal behavior if all forward stack distances, i.e. the number of
unique cache lines accessed between this instruction and the next access
to the same cache line, are larger or equal to the size of the cache. In
that case, we know that the next instruction to touch the same data is
very likely to be a cache miss. Therefore, we can use a non-temporal
instruction to bypass the entire cache hierarchy for such accesses.

This approach has a major drawback. Most applications, even purely
streaming ones that do not reuse data, may still exhibit short tempo-
ral reuse, e.g. spatial locality where neighboring data items on the same
cache line are accessed in close succession. Since cache management is
done at a cache line granularity, this clearly restricts the number of pos-
sible instructions that can be treated as non-temporal.

Refining the simple approach

Most hardware implementations of cache management instructions al-
low the non-temporal data to live in parts of the cache hierarchy, such

67

C
ac

h
e

S
ta

ck

M
R

U

L
R

U

Always Hit Miss if the ETM bit is set

Evicted
DRAM

If ETM bit not set

𝑑𝐸𝑇𝑀
𝑑𝑚𝑎𝑥

F
re

q
u
e
n
cy

Evict early if ETM bit set

Stack Distance

Always Miss

Figure 5: LRU stack (top) and the forward stack distance distribution of a memory

accessing instruction (bottom). If the ETM bit is set the cache lines are evicted early

to DRAM when they reach 𝑑𝐸𝑇𝑀 . The bars within the shaded area of the forward

stack distances distribution represent memory accesses that will result in cache misses

if the ETM bit is set. An instruction is classified as non-temporal if there are less than

𝑡𝑚 forward stack distances between 𝑑𝐸𝑇𝑀 and 𝑑𝑚𝑎𝑥 and at least one forward stack

distance greater than 𝑑𝑚𝑎𝑥.

as the L1, before it is evicted to memory. We can exploit this to accom-
modate short temporal reuse of cache lines. We assume that whenever
a non-temporal memory access touches a cache line, the cache line is
installed in the MRU-position of the LRU stack, and a special bit on the
cache line, the evict to memory (ETM) bit, is set. Whenever a normal
memory access touches a cache line, the ETM bit is cleared. Cache lines
with the ETM bit set are evicted earlier than other lines, see Figure 5.
Instead of waiting for the line to reach the depth 𝑑𝑚𝑎𝑥 it is evicted when
it reaches a shallower depth, 𝑑𝐸𝑇 𝑀 . This allows us to model implemen-
tations that allow non-temporal data to live in parts of the memory hi-
erarchy. For example, the memory controller in our AMD system evicts
ETM tagged cache lines from the L1 to main memory, and would there-
fore be modeled with 𝑑𝐸𝑇 𝑀 being the size of the L1 and 𝑑𝑚𝑎𝑥 the total
combined cache size.

The model with the ETM bit allows us to consider memory accesses
as non-temporal even if they have short reuses that hit in the small ETM
area. Instead of requiring that all forward stack distances are larger than
the cache size, we require that there is at least one such access and that
the number of accesses that reuse data in the area of the LRU stack out-
side the ETM area, the gray area in Figure 5, is small, i.e. the number of
misses introduced if the access is treated as non-temporal is small. We

68

thus require that one stack distance is greater or equal to 𝑑𝑚𝑎𝑥, and that
the number of stack distances that are larger or equal to 𝑑𝐸𝑇 𝑀 but smaller
than 𝑑𝑚𝑎𝑥 is smaller than some threshold, 𝑡𝑚. In most implementations
𝑡𝑚 will not be a single value for all accesses, but depend on factors such
as how many additional cache hits can be created by disabling caching
for a memory access.

The hardware we want to model does not, unfortunately, reset the
ETM bit when a temporal access reuses ETM data. This new situation
can be thought of as sticky ETM bits, as they are only reset on cache line
eviction.

Handling sticky ETM bits

When the ETM bit is retained for the cache lines’ entire lifetime in
the cache, the conditions for a memory accessing instruction to be non-
temporal developed in Section 5 are no longer sufficient. If instruction
X sets the ETM bit on a cache line, then the ETM status applies to all
subsequent reuses of the cache line as well. To correctly model this, we
need to make sure that the non-temporal condition from Section 5 ap-
plies, not only to X, but also to all instructions that reuse the cache lines
accessed by X.

The sticky ETM bit is only a problem for non-temporal accesses that
have forward reuse distances less than 𝑑𝐸𝑇 𝑀 . For example, consider a
memory accessing instruction, Y, that reuses the cache line previously
accessed by a non-temporal access X (here Y is a cache hit). When Y
accesses the cache line it is moved to the MRU position of the LRU stack,
and the sticky ETM bit is retained. Now, since Y would have resulted in
a cache hit no matter if X had set the sticky ETM bit or not, this is the
same as if we would have set the sticky ETM bit for the cache line when
it was accessed by Y.

Therefore, instead of applying the non-temporal condition to a single
instruction, we have to apply it to all instructions reusing the cache line
accessed by the first instruction.

In a machine, such as our AMD system, where 𝑑𝐸𝑇 𝑀 corresponds
to the L1 cache, this new condition allows us to categorize a memory
access as non-temporal if all the data it touches is reused through the L1
cache or misses in the entire cache hierarchy. Due to the stickiness of
the non-temporal status, this condition must also hold for any memory
access that reuses the same data through the L1 cache.

Handling sampled data

To avoid the overhead of measuring exact stack distances, we use Stat-
Stack to calculate stack distances from sampled reuse distances. Sampled

69

Level Size (kB) Associativity Line Size (B) Shared

1 (data) 64 2 64 No
2 512 16 64 No
3 6144 48 64 Yes

Table 1: Cache properties of the model system (AMD Phenom II X4 920)

stack distances can generally be used in place of a full stack distance trace
with only a small decrease in average accuracy. However, there is always
a risk of missing some critical behavior. This could potentially lead to
flagging an access as non-temporal, even though the instruction in fact
has some temporal behavior in some cases, and thereby introducing an
unwanted cache miss.

In order to reduce the likelihood of introducing misses due to sam-
pling, we need to make sure that flagging an instruction as non-temporal
is always based on reliable data. We do this by introducing a sample
threshold, 𝑡𝑠, which is the smallest number of samples originating from
an instruction that can be considered to be non-temporal.

6 Evaluation methodology

Model system

To evaluate our model we used an x86 based system with an AMD Phe-
nom II X4 920 processor with the AMD family 10h micro-architecture.
The processor has 4-cores, each with a private L1 and L2 cache and a
shared L3 cache. The processor enforces exclusion between L1 and L2,
but not always between L3 and the lower levels if data is shared between
cores.

According to the documentation of the prefetchnta instruction,
data fetched using the non-temporal prefetch is not installed in the L2
unless it was fetched from the L2 in the first place. However, our ex-
periments show that this is not the case. It turns out that data fetched
from the L2 cache using the non-temporal prefetch instruction is never
re-installed in the L2. The system therefore works like the system mod-
eled in Section 5 where the ETM-bit is sticky.

We used the performance counters in the processor to measure the
cycles and instruction counts using the perf framework provided by re-
cent Linux kernels.

70

Benchmark preparation

The benchmarks were first compiled normally for initial reference runs
and sampling. Sampling was done on each benchmark running with the
reference input set. Due to the low overhead of the sampler, the bench-
marks were run to completion with the sampler attached throughout the
entire run. After the initial profile run, we analyzed the profile using the
algorithm in the previous section and generated a list of non-temporal
memory accesses. The benchmarks were then recompiled taking this
profile into account.

The cache managed versions of the benchmarks were compiled using
a compiler wrapper script that hooked into the compilation process be-
fore the assembler was called. The assembly output was then modified
before it was passed to the assembler. Using the debug information from
the binary we were able to find the memory accesses in the assembly out-
put corresponding the instruction addresses in the non-temporal list. Be-
fore each non-temporal memory access the script inserted a prefetchnta
instruction to the same memory location as the original access.

Algorithm parameters

We model the cache behavior of our benchmarks using StatStack and a
reuse distance sample with 100 000 memory access pairs per benchmark.
We use a minimum samples threshold, 𝑡𝑠, of 50 samples. The maximum
number of introduced misses, 𝑡𝑚, is set to 0 samples; this may seem
strict at first, but remember that we are sampling memory accesses and
one sample corresponds to several hundred thousand memory accesses.

Cache exclusivity guarantees that there is at most one copy of a cache
line in the caches where exclusivity is enforced. For example, an access
to a cache line that resides in the L2 of our system will cause that cache
line to be removed from the L2 and installed in the L1. A system where
cache exclusivity is not enforced would not remove the copy in the L2.
When the cache line is evicted from the L1 cache it is installed in the
L2 cache, i.e. it is transferred from the LRU position of the L1 to the
MRU position of the L2. This behavior lets us merge the two caches and
treat them as one larger LRU stack where each cache level corresponds
to a contiguous section of the stack. In the model system, the first 1k
lines correspond to the L1 cache, the next 8 kB lines correspond to the
L2 and the last 96 kB lines correspond to the L3. This global stack has
105 k lines in total, i.e. the total cache size in lines. We let 𝑑𝑚𝑎𝑥 be the
depth of this global stack.

Since we are using StatStack we have made the implicit assumption
that caches can be modeled to be fully associative, i.e. conflict misses

71

are insignificant. In most cases this is a valid assumption, especially for
large caches with a high degree of associativity. A notable case where
this assumption may break is for the L1 cache, which has a low degree
of associativity. We therefore have to be more conservative when eval-
uating stack distances within this range. We use different, conservative,
values of 𝑑𝐸𝑇 𝑀 , when calculating the number of introduced misses and
handling the stickiness of the ETM bits. We use a 𝑑𝐸𝑇 𝑀 value of twice
the L1 size, i.e. 2048 lines, when handling stickiness and half the L1 size,
i.e. 512 lines, when calculating the number of misses introduced.

Benchmarks

Using the software classification introduced in Section 2 we selected two
benchmarks representing each category for analysis. The number of non-
temporal memory accesses and the effect on other applications in the
system will depend on a benchmark’s position in the classification map.
Applications on the left-hand side of the map, Don’t Care and Victims,
do not install a significant amount of data in the shared cache and do
not disturb other applications running on the system. As expected, our
algorithm does not find any non-temporal memory accesses in such ap-
plications. Applications on the right-hand side of the map, Gobblers &
Victims and Cache Gobblers, have a high base miss ratio and store a large
amount of non-temporal data in the shared cache. We expect such ap-
plications to be good candidates for cache management.

There is normally no need to differentiate between cache misses and
replacements. Whenever there is a cache miss, a new cache line is in-
stalled and another one is replaced. When we start to software manage
the cache, we disable caching for certain instructions. This causes misses
to occur, but, since the data is never cached, no replacements take place.
When we classify managed applications, it therefore makes more sense
to use the replacement ratio rather than the miss ratio to better capture
the effect on other application.

We extended the StatStack algorithm to handle non-temporal mem-
ory accesses to calculate new replacement and miss ratios for managed
applications. Looking at Figure 6(a) we see that libquantum’s replace-
ment ratio is reduced from approximately 20% to 0% in the shared cache,
while the miss ratio stays at 20%. This can be explained by the fact that
the instructions installing non-temporal data into the SLLC now bypass
the cache. The fact that they bypass the cache leads to a decreased re-
placement ratio, i.e. fewer cache lines installed in the SLLC. We would
normally expect the miss ratio to be decreased due to a reduction of non-
temporal data in the SLLC, which would allow more temporal data to be

72

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

64
kB

256
kB

1
M
B

4
M
B

16
M
B

64
M
B

256
M
B

1
G
B

M
is

s
&

R
e
p
l.

R
at

io

Cache size

Miss & Repl. Ratio (Unmanaged)
Miss Ratio (Managed)

Replacement Ratio (Managed)

(a) libquantum

0.0%

5.0%

10.0%

15.0%

64
kB

256
kB

1
M
B

4
M
B

16
M
B

64
M
B

256
M
B

1
G
B

M
is

s
&

R
e
p
l.

R
at

io

Cache size

(b) lbm

Figure 6: Miss and replacement ratio before and after cache managing the benchmarks

to avoid caching of non-temporal data. The number of replacements can be reduced by

cache management in both applications. The number of misses in (b) can be reduced,

particularly around the target cache size, because a reduction in the number of replace-

ments will allow more temporal data to fit in the cache. The miss ratio normally drops

to 0% once the entire data set fits in the cache, this is no longer the case for managed

applications, since the non-temporal memory accesses always cause a miss.

stored instead. In the case of libquantum, there is no additional temporal
data that can be squeezed into the cache.

When looking at cache sizes larger than 𝑑𝑚𝑎𝑥, another effect of soft-
ware cache management is seen. As the data set starts to fit in the cache,
the miss ratio is normally reduced. This may no longer be the case when
applying cache management. When we manage the cache, we force cer-
tain accesses to bypass the cache and the reuse to become a miss, inde-
pendent of cache size.

Lbm has slightly more interesting access patterns than libquantum,
which includes a decrease in miss ratio around the target cache size.
Looking at Figure 6(b), we notice that, in addition to the features dis-
played by libquantum, parts of the miss ratio curve have been shifted to

73

0.001%

0.01%

0.1%

1%

10%

0.01% 0.1% 1% 10% 100%

C
ac

h
e

S
e
n
si

ti
vi

ty

Base Replacement Ratio

bwaves

milc

leslie3d

soplex

lbm

libquantum

Unmanaged Managed

Don’t Care

Victims Gobblers & Victims

Cache Gobblers

Figure 7: Changes in classification after disabling caching of non-temporal memory ac-

cesses. Note that this classification is based on the replacement ratio rather than the

miss ratio.

the left. This can be explained by the fact that removing non-temporal
data from the cache allows more of the temporal data to fit in the cache.

We reclassify our benchmarks based on their new replacement ratio
curves, the new classification allows us to predict how applications affect
each other after we introduce the non-temporal memory accesses. The
change in classification for the managed benchmarks is shown in Figure 7.

7 Results and analysis

The results for runs of six different mixes of four SPEC2006 benchmarks
running with the reference input set, with and without software cache
management are shown in Figure 8 and Figure 9. Figure 8 shows a mix of
four applications from different categories. Figure 9 shows five different
mixes consisting of two pairs of benchmarks from different categories.
The instructions per cycle, IPC, is shown for each of the benchmarks,
both when running in isolation and when running in the mix and with
and without cache management. The cache management instructions

74

0

0.5

1

1.5

2

IP
C

0%

10%

20%

30%

40%

401.bzip2

(Victims)

470.lbm
(Gobblers &

Victims)

462.libquantum

(Cache Gobblers)

416.gamess

(Don’t care)

S
p
e
e
d
u
p

Mix Unmanaged
Mix Managed

Isolation Unmanaged
Isolation Managed

Figure 8: Performance for a mix of four applications, each from a different category.

The IPC plot compares the IPC for managed and unmanaged benchmarks, both in a

mix and in isolation. The speedup is relative to the unmanaged mix.

are not included in the instruction counts when calculating IPC for man-
aged applications, including them would give an unfair advantage to the
managed applications. The speedup is the improvement in IPC over the
unmanaged version when running in a mix.

As seen by comparing the IPC for managed and unmanaged applica-
tions in isolation, Figure 8 and Figure 9, inserting additional prefetchnta
instructions does not negatively impact performance in isolation. In fact,
the IPC of LBM is increased by approximately 12%. This effect can
be explained by Figure 6(b), where a miss ratio knee is clearly visible
between 4MB and 8MB. Applying software cache management pushes
the knee to the left, i.e. towards smaller cache sizes, and decreases the
miss ratio for systems with between 4MB and 8MB of cache.

Looking at Figure 8 and Figure 9 we see that all applications, except
for the applications in the Don’t Care category, have a lower IPC when
running in a mix than running in isolation. This is to be expected since
running in a mix means that all the applications compete for a shared
cache and shared bandwidth. Applications in the Don’t Care category fit
most of their data in the private cache, which makes their bandwidth and
SLLC requirements extremely small. This explains why this category
does not benefit from cache management.

The difference between the Victims and the Don’t Care categories is
that the former uses some amounts of L3 cache, while the latter does
not. This would suggest that interference between these two categories
should be small when running together. This is supported by Figure 8(d),
where all applications in this mix run at the same speed as in isolation.

75

0

0
.51

1
.52

43
3.

m
ilc

46
2.

lib
qu

an
tu

m

47
3.

as
ta

r

40
1.

bz
ip

2

IPC

Cache
gobblers

Victims

0
%

5
%

1
0
%

1
5
%

2
0
%

2
5
%

43
3.

m
ilc

46
2.

lib
qu

an
tu

m

47
3.

as
ta

r

40
1.

bz
ip

2

Speedup

Cache
gobblers

Victims

M
ix

U
n
m

gd
.

M
ix

M
gd

.
Is

o
.

U
n
m

gd
.

Is
o
.

M
gd

.

(a
)

C
a
ch

e
G

ob
b
le

rs
↔

V
ic

ti
m

s

0

0
.51

1
.52

43
3.

m
ilc

46
2.

lib
qu

an
tu

m

41
6.

ga
m

es
s

40
0.

pe
rl

be
nc

h

IPC

Cache
gobblers

Don’tcare

0
%

5
%

1
0
%

1
5
%

2
0
%

2
5
%

43
3.

m
ilc

46
2.

lib
qu

an
tu

m

41
6.

ga
m

es
s40

0.
pe

rl
be

nc
h

Speedup

Cache
gobblers

Don’tcare

(b
)

C
a
ch

e
G

ob
b
le

rs
↔

D
on

’t
C

a
re

0

0
.51

1
.52

43
3.

m
ilc

46
2.

lib
qu

an
tu

m

47
0.

lb
m

43
7.

le
sl
ie

3d

IPC

Cache
gobblers

Gobblers
&Victims

0
%

5
%

1
0
%

1
5
%

2
0
%

2
5
%

43
3.

m
ilc

46
2.

lib
qu

an
tu

m

47
0.

lb
m

43
7.

le
sl
ie

3d

Speedup

Cache
gobblers

Gobblers
&Victims

(c
)

C
a
ch

e
G

ob
b
le

rs
↔

G
ob

b
le

rs
&

V
ic

ti
m

s

76

0

0
.51

1
.52

47
3.

as
ta

r

40
1.

bz
ip

2

41
6.

ga
m

es
s

40
0.

pe
rl

be
nc

h

IPC

Victims

Don’tcare

0
%

5
%

1
0
%

1
5
%

2
0
%

2
5
%

47
3.

as
ta

r

40
1.

bz
ip

2

41
6.

ga
m

es
s40

0.
pe

rl
be

nc
h

Speedup

Victims

Don’tcare

(d
)

V
ic

ti
m

s
↔

D
on

’t
C

a
re

0

0
.51

1
.52

40
1.

bz
ip

2

47
3.

as
ta

r

43
7.

le
sl
ie

3d

47
0.

lb
m

IPC

Victims

Gobblers
&Victims

0
%

5
%

1
0
%

1
5
%

2
0
%

2
5
%

40
1.

bz
ip

2

47
3.

as
ta

r

43
7.

le
sl
ie

3d

47
0.

lb
m

Speedup

Victims

Gobblers
&Victims

(e
)

V
ic

ti
m

s
↔

G
ob

b
le

rs
&

V
ic

ti
m

s

F
ig

u
re

9
:

P
e
rf

o
rm

an
ce

o
fm

ix
e
s

w
it

h
b

e
n
ch

m
ar

k
s

fr
o

m
tw

o
d

iff
e
re

n
t

ca
te

go
ri

e
s.

B
e
n
ch

m
ar

k
s

fr
o

m
d

iff
e
re

n
t

ca
te

go
ri

e
s

ar
e

se
p

ar
at

e
d

b
y

a
d

o
tt

e
d

lin
e
.

A
ll

o
ft

h
e

b
e
n
ch

m
ar

k
s,

e
x
ce

p
t

fo
r

th
e

D
on

’t
C

a
re

ca
te

go
ry

,g
e
n
e
ra

lly
ru

n
sl

o
w

e
r

in
m

ix
e
s

th
an

in
is

o
la

ti
o

n
.

D
is

ab
lin

g
ca

ch
in

g
fo

r
n
o

n
-t

e
m

p
o

ra
l

m
e
m

o
ry

ac
ce

ss
e
s

re
ga

in
s

so
m

e
o

f
th

e
IP

C
lo

st
to

ca
ch

e
an

d
b

an
d

w
id

th
co

n
te

n
ti

o
n

w
it

h
o

u
t

an
y

n
e
ga

ti
ve

im
p

ac
t

o
n

ap
p

lic
at

io
n

p
e
rf

o
rm

an
ce

in

is
o

la
ti

o
n
.

77

There could still be some interference between applications within the
Victims category, but this is likely to be very small since these applications
have a small bandwidth and cache footprint.

Because applications in the Cache Gobblers and Gobblers & Victims
categories have similar cache and bandwidth pressure they affect other
applications in the same way. Looking at Figure 9(a), Figure 9(c) and Fig-
ure 8(e) we see that running together with applications from these cate-
gories causes a significant decrease in IPC compared to when running in
isolation. We expect that managing these categories reduces their cache
footprint, and as a consequence reduce their impact on IPC. Our results
indicate that some of the performance lost to contention for the shared
resources can be regained using software cache management.

A somewhat surprising result might be that applications from the
Cache Gobblers category benefit from cache management themselves.
This is the case for all of the mixes, but is particularly visible in Fig-
ure 9(b). The speedup when running with applications from the two
victim categories can largely be attributed to a reduction in the total
bandwidth requirement of the mix. The speedup when running together
with the Don’t Care, Figure 9(b), is harder to explain, but is likely due
to small reductions in the miss ratio in the Cache Gobblers.

8 Related work

There has been plenty of research focused on improving cache efficiency.
Most of this work has been targeting the miss ratio of private caches [11–
13]. Focus has recently started to shift towards shared caches [3, 15].
These methods are either software driven or hardware driven. They all
have one thing in common, the need to identify non-temporal data or,
as in our case, memory accesses referencing non-temporal data. Once
the non-temporal data is identified this information is propagated to the
cache, typically by setting a non-temporal bit in the cache tags. This
bit is then used by the cache replacement policy to explicitly handle
non-temporal data.

Tyson et al. [11] propose a simulation based method to identify non-
temporal memory accesses. It can be described in two steps: First, they
simulate the cache and identify the instructions with miss ratios above a
threshold (25%). Then, for each dynamic execution of these instructions,
they keep track of how often the fetched cache line is accessed before
being evicted. If this occurs less than 25% of the time the instruction is
identified as being non-temporal. Our approach differs on the following
key points: 1) It does not require expensive simulations; 2) It consid-
ers all instructions as potentially non-temporal, not only the ones with a

78

miss ratio above a threshold. This increases the potential to reduce the
caching of non-temporal data; 3) Our method is tailored to use existing
hardware on the x86 architecture.

Wong et al. [13] propose a method to identify non-temporal memory
accesses based on Mattson’s optimal replacement algorithm (OPT) [5].
Their method is similar to ours in that it uses the forward stack distance
distribution of a memory accessing instruction to determine if it is a tem-
poral instruction. However, instead of using LRU stack distances, they
use OPT stack distances, which requires expensive simulation.

Several hardware methods have been proposed [3, 11, 13, 15],
that dynamically identify non-temporal data. Xie et al. [15] propose
a replacement policy, PIPP, to effectively way-partition a shared cache,
that explicitly handles non-temporal (streaming) data. To detect non-
temporal data, they introduce a set of shadow tags [8] used to count the
number of hits to a cache line that would have occurred if the thread was
allocated all ways in the cache set. Similarly to Tyson’s method [11], they
identify a cache line as non-temporal if there are no accesses to it prior to
its eviction. This approach is rather course grained, during a time period
when the majority of the data accessed by a thread is non-temporal it
assumes that all data accessed by the thread is non-temporal.

Qureshi et al. [7] propose an insertion policy (DIP) where on a cache
miss to non-temporal data it is installed in the LRU position, instead
of the MRU position of the LRU stack. To detect non-temporal data
they use two sets of training cache sets. In the first training set, data is
installed in the LRU position, and in the other data is installed in the
MRU position. The rest of the cache sets use the insertion policy of the
training set that currently has the highest hit ratio. This method has been
extended [3] to be thread aware (TADIP), by using separate training
sets and insertion policies (insertion in LRU or MRU) for the different
threads. Both DIP and TADIP exhibit the same course grained time
varying behavior as PIPP. A recent extension [4] introduces an additional
policy that installs cache lines in the MRU − 1 position.

Petoumenos et al. [6] propose an instruction based reuse distance
predictor and a replacement algorithm based on the predicted reuse dis-
tances. Their algorithm approximates the optimal algorithm by replacing
the cache line that is predicted to be reused furthest into the future.

The time varying behavior of PIPP, DIP and TADIP can be effective to
handle the time varying behavior of applications (program phases). How-
ever, for applications whose instruction working set is different between
program phases, the static classification of memory instructions, used in
this and other papers, allows for a more fine grained control, while at the
same time following the time varying behavior of the applications.

79

9 Summary and future work

We describe an application classification framework that allows us to pre-
dict how applications affect each other when running on a multicore
and a method for finding non-temporal memory accesses. Using a sin-
gle low-overhead profile run of an application, we can acquire enough
information to both classify the application and find non-temporal mem-
ory accesses for any combination of shared and private cache sizes. Our
method can be used together with contemporary hardware to provide
a speedup for existing applications. We show that this is the case for a
selection of the SPEC2006 benchmarks. Using a modified StatStack im-
plementation we can reclassify applications based on their replacement
ratios after applying cache management, this allows us to reason about
how cache management impacts performance.

Future work will explore other hardware mechanism for handling
non-temporal data hints from software and possible applications in sched-
uling.

80

Acknowledgments

The authors would like to thank Kelly Shaw and David Black-Schaffer
for valuable comments and insights that has helped to improve this paper.
This work was financially supported by the CoDeR-MP and UPMARC
projects.

References

[1] Erik Berg and Erik Hagersten. “Fast Data-Locality Profiling of
Native Execution”. In: ACM SIGMETRICS Performance Evalua-
tion Review 33.1 (2005), pp. 169–180. DOI: 10.1145/1071690.
1064232.

[2] David Eklov and Erik Hagersten. “StatStack: Efficient Modeling
of LRU Caches”. In: Proc. International Symposium on Performance
Analysis of Systems & Software (ISPASS). Mar. 2010, pp. 55–65.
DOI: 10.1109/ISPASS.2010.5452069.

[3] Aamer Jaleel, William Hasenplaugh, Moinuddin Qureshi, Julien
Sebot, Jr Simon Steely, and Joel Emer. “Adaptive Insertion Policies
for Managing Shared Caches”. In: Proc. International Conference on
Parallel Architectures and Compilation Techniques (PACT). 2008,
pp. 208–219. DOI: 10.1145/1454115.1454145.

[4] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely Jr., and
Joel Emer. “High Performance Cache Replacement Using Re-
Reference Interval Prediction (RRIP)”. In: Proc. International Sym-
posium on Computer Architecture (ISCA). 2010, pp. 60–71. DOI:
10.1145/1815961.1815971.

[5] Richard L. Mattson, Jan Gecsei, Donald R. Slutz, and Irving L.
Traiger. “Evaluation techniques in storage hierarchies”. In: IBM
Journal of Research and Development 9.2 (1970), pp. 78–117.

[6] Pavlos Petoumenos, Georgios Keramidas, and Stefanos Kaxiras.
“Instruction-based Reuse-Distance Prediction for Effective Cache
Management”. In: Proc. Symposium on Systems, Architectures, Mod-
eling, and Simulation (SAMOS). 2009, pp. 49–58. DOI: 10.1109/
ICSAMOS.2009.5289241.

[7] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C.
Steely, and Joel Emer. “Adaptive Insertion Policies for High Perfor-
mance Caching”. In: Proc. International Symposium on Computer
Architecture (ISCA). San Diego, California, USA: ACM, 2007,
pp. 381–391. DOI: 10.1145/1250662.1250709.

81

http://dx.doi.org/10.1145/1071690.1064232
http://dx.doi.org/10.1145/1071690.1064232
http://dx.doi.org/10.1109/ISPASS.2010.5452069
http://dx.doi.org/10.1145/1454115.1454145
http://dx.doi.org/10.1145/1815961.1815971
http://dx.doi.org/10.1109/ICSAMOS.2009.5289241
http://dx.doi.org/10.1109/ICSAMOS.2009.5289241
http://dx.doi.org/10.1145/1250662.1250709

[8] Moinuddin K. Qureshi and Yale N. Patt. “Utility-Based Cache Par-
titioning: A Low-Overhead, High-Performance, Runtime Mecha-
nism to Partition Shared Caches”. In: Proc. Annual International
Symposium on Microarchitecture (MICRO). 2006, pp. 423–432.
DOI: 10.1109/MICRO.2006.49.

[9] Timothy Sherwood, Brad Calder, and Joel Emer. “Reducing Cache
Misses Using Hardware and Software Page Placement”. In: Proc.
International Conference on Supercomputing (ICS). Rhodes, Greece,
1999, pp. 155–164. DOI: 10.1145/305138.305189.

[10] David Tam, Reza Azimi, Livio Soares, and Michael Stumm. “Man-
aging Shared L2 Caches on Multicore Systems in Software”. In:
Proc. Workshop on the Interaction between Operating Systems and
Computer Architecture (WIOSCA). 2007.

[11] Gary Tyson, Matthew Farrens, John Matthews, and Andrew R.
Pleszkun. “A Modified Approach to Data Cache Management”.
In: Proc. Annual International Symposium on Microarchitecture (MI-
CRO). 1995, pp. 93–103. DOI: 10.1109/MICRO.1995.476816.

[12] Zhenlin Wang, McKinley Kathryn S., Arnold L. Rosenberg, and
Weems Charles C. “Using the Compiler to Improve Cache Re-
placement Decisions”. In: Proc. International Conference on Parallel
Architectures and Compilation Techniques (PACT). 2002, pp. 199–
208. DOI: 10.1109/PACT.2002.1106018.

[13] Wayne A. Wong and Jaen-Loup Baer. “Modified LRU Policies for
Improving Second-Level Cache Behavior”. In: Proc. International
Symposium on High-Performance Computer Architecture (HPCA).
2000, pp. 49–60. DOI: 10.1109/HPCA.2000.824338.

[14] Yuejian Xie and Gabriel H Loh. “Dynamic Classification of Pro-
gram Memory Behaviors in CMPs”. In: Proc. Workshop on Chip
Multiprocessor Memory Systems and Interconnects (CMP-MSI).
2008.

[15] Yuejian Xie and Gabriel H. Loh. “PIPP: Promotion/Insertion
Pseudo-Partitioning of Multi-Core Shared Caches”. In: ACM
SIGARCH Computer Architecture News 37.3 (June 2009),
pp. 174–183. DOI: 10.1145/1555815.1555778.

82

http://dx.doi.org/10.1109/MICRO.2006.49
http://dx.doi.org/10.1145/305138.305189
http://dx.doi.org/10.1109/MICRO.1995.476816
http://dx.doi.org/10.1109/PACT.2002.1106018
http://dx.doi.org/10.1109/HPCA.2000.824338
http://dx.doi.org/10.1145/1555815.1555778

PAPER II

Efficient Techniques for Predicting

Cache Sharing and Throughput

Andreas Sandberg

David Black-Schaffer

Erik Hagersten

©2012 ACM, Inc. Reprinted, with permission, from PACT’12, September 19–23, 2012.

DOI: 10.1145/2370816.2370861

http://dx.doi.org/10.1145/2370816.2370861

Abstract— This work addresses the modeling of shared cache conten-
tion in multicore systems and its impact on throughput and bandwidth.
We develop two simple and fast cache sharing models for accurately pre-
dicting shared cache allocations for random and LRU caches.

To accomplish this we use low-overhead input data that captures the
behavior of applications running on real hardware as a function of their
shared cache allocation. This data enables us to determine how much
and how aggressively data is reused by an application depending on how
much shared cache it receives. From this we can model how applications
compete for cache space, their aggregate performance (throughput)¸ and
bandwidth.

We evaluate our models for two- and four-application workloads in
simulation and on modern hardware. On a four-core machine, we dem-
onstrate an average relative fetch ratio error of 6.7% for groups of four
applications. We are able to predict workload bandwidth with an average
relative error of less than 5.2% and throughput with an average error of
less than 1.8%. The model can predict cache size with an average error
of 1.3% compared to simulation.

1 Introduction

The shared cache in contemporary multicore processors has been repeat-
edly shown to be a critical resource for application performance [8, 13–
15, 18]. This has motivated a significant amount of research into model-
ing the impact of cache sharing with the goal of understanding applica-
tions’ interactions through the shared cache and for providing insight to
schedulers and runtime systems [10, 11, 15, 20].

This work presents twomodels for predicting cache allocations, band-
width requirements, and performance of application mixes in the pres-
ence of a shared last-level cache. The models are developed for ran-
dom replacement and LRU caches, but are shown to be accurate for the
pseudo-LRU caches of modern Intel processors.

These models take into account the complexities of modern hard-
ware (such as out-of-order execution and hardware prefetchers) by lever-
aging input data that incorporates the applications’ behavior on real hard-
ware. This input data consist of the applications’ fetch and hit rates,
IPCs, and hit ratios as a function of their cache allocation, and can be
acquired with low overhead on modern multicore machines [6]. This
low-overhead data is in contrast to many existing methods for model-
ing cache sharing which rely on expensive data such as stack distance
traces [2–4, 17].

86

To model cache sharing we use an application’s fetch and hit rates
as a function of cache size to determine how much of its data is reused
for a given cache allocation, and how often that data is reused. With
this information we can model how multiple applications compete for
shared cache space. The model then uses a numerical solver to find a sta-
ble solution that determines the final cache allocations. Once we know
the cache allocations we can use our input data to predict performance
(throughput) and bandwidth requirements for mixes of co-scheduled ap-
plications.

This ability to model cache sharing and predict its impact on per-
formance and bandwidth is important for scheduling and performance
analysis on complex systems. Suchmodeling forms the basis for resource-
aware placement in modern memory hierarchies, scheduling on hetero-
geneous architectures, and for making runtime decisions on future chips
in the presence of power constraints (e.g., dark silicon). By combining
low-overhead data that reflects the complexities of the real hardware
and a simple sharing model we are able to quickly and accurately predict
sharing and performance, which is essential for such goals.

This paper makes the following contributions:

• We present a statistical cache-sharing model for random caches
that uses high-level, low-overhead input data.

• We extend the model to LRU caches by deriving aggregate data
reuse information from the input data, and using this to model
competition for cache space based on the data reuse frequencies of
each application.

• We demonstrate the accuracy of the model for predicting cache
sharing and fetch ratios for mixes of two and four co-scheduled
applications through simulation and on real hardware.

• We demonstrate the ability to accurately predict performance
(IPC) and bandwidth requirement of application mixes on real
hardware.

2 Modeling Cache Sharing

Consider two applications sharing a cache. Their behavior with respect
to the shared cache can intuitively be thought of as two flows of liquid fill-
ing an overflowing glass. The two in-flows correspond to fetches into the
cache and the liquid pouring out of the glass corresponds to the replace-
ment stream from the cache. If the in-flows are constant, the system will

87

0

10

20

30

40

50

0 2 4 6 8 10 12

Fe
tc

h
R

at
e

[
fe

tc
h
e
s

/
k
C

yc
le

]

Cache Size [MB]

Figure 1: Example Cache Pirate data showing fetch rate as a function of cache size for

two applications.

eventually reach a steady state. At steady state, the concentrations of the
liquids in the glass are constant and proportional to their relative inflow
rates. Furthermore, the outflow rates of the liquids are proportional to
their concentrations. This very simple analogy describes the behavior of
random caches.

Describing LRU caches requires data reuse to be considered since
data reused frequently enough will stick in the cache and avoid replace-
ment. In the liquid analogy above, data reused frequently enough can
be thought of as ice cubes that never leave the glass. The threshold for
how frequently data needs to be reused to exhibit “sticky” behavior varies
between sharing situations.

Low-Overhead Input Data

The goal of our cache sharing models is to find the amount of cache allo-
cated to each application in a mix of co-scheduled applications at steady
state. This requires per-application information about fetch1 rate and
data reuse characteristics for all applications as well as how that infor-
mation is affected by cache contention. In order for this information
to accurately describe the target system, it needs to take into consider-
ation effects from complex dynamic hardware, such as super-scalar out-
of-order execution and hardware prefetching.

Cache Pirating [6] is a method to capture our required input data
on the target hardware. In Cache Pirating, the studied application is
co-scheduled to share a cache with a small cache-intensive micro bench-
mark, the Pirate. The Pirate is designed to steal only cache, leaving other
shared resources untouched. In a single run, the amount of cache the

1The term fetch is used extensively in this paper to describe a movement of data from
memory to cache caused by either a cache miss or prefetching activity.

88

Pirate steals is varied, while the effects on the studied application are
measured using hardware performance counters. The application’s miss
rate, fetch rate, hit rate, miss ratio, fetch ratio, hit ratio, memory band-
width, CPI, etc., as a function of cache size, can be measured with an
average overhead of 5.5%.

Cache Pirating typically measures sensitivity by stealing a whole way
at a time, while our models assume continuous data. We therefore inter-
polate the measured data using monotone cubic splines [7]. We chose
this interpolation method over linear interpolation because the resulting
function estimates the behavior in applications with sharp steps in their
fetch rate curves (e.g., applications with a small fixed data set) more ac-
curately by making the edges sharper. Figure 1 shows an example of data
produced using Cache Pirating: Fetch rate as a function of cache size for
two applications, measured in 16 discreet steps and interpolated with
monotone cubic splines.

The following section describes how the fetch rate and hit rate infor-
mation measured using Cache Pirating is used to determine the amount
of cache allocated to each application in a sharing situation. Knowing
the amount of cache allocated to each application allows us to predict
additional performance metrics. In Section 4 we show how throughput
and bandwidth demand can be predicted using knowledge about cache
allocations and the data from Cache Pirating.

Modeling Random Caches

In random caches, sharing only depends on two events: fetches into the
cache and replacements. At steady state, the amount of data an applica-
tion installs into the cache is equal to the amount of data evicted from
that application’s cache allocation; that is, the application’s fetch rate
(fetches per cycle) must equal its replacement rate (replacements per
cycle). An application’s replacement rate is proportional to the total
fetch rate, F, into the cache and its replacement probability. Since re-
placements are random, the replacement probability is proportional to
the amount of cache allocated to the application. For a shared cache of
size C and an application, 𝑛; the application’s fetch rate, f𝑛, and cache
allocation, c𝑛, are related according to:

⎧
⎨⎩

f𝑛 = F c𝑛
C

C =
𝑖

c𝑖
(1)

We can solve the equation system above, given that we have each ap-
plication’s fetch rate as a function of cache size, using readily available
equation system solvers.

89

Modeling LRU Caches

LRU caches, unlike random caches, use access history to replace the item
that has been unused for the longest time. We refer to the duration
of time a cache line has been unused as its age. Whenever there is a
replacement decision, the oldest cache line is replaced.

In practice, we can not determine the age of individual cache lines
based on our input data. Instead, we look at groups of cache lines with
the same maximum age2 and let the groups from different applications
compete for cache space.

Cache lines that are fetched into the cache but are evicted before they
are reused are put in a separate group and handled differently. After
the initial fetch into the cache, the age of these cache lines increases
whenever any application fetches new data into the cache. This allows us
to treat them as one group common to all applications, with one common
age. We will refer to these cache lines as volatile since they are evicted
from the cache before they are reused.

Cache lines which are reused before they are evicted from the cache
are referred to as sticky cache lines since their reuse makes them resilient
to eviction. Normally an application reuses more data in the cache when
the amount of cache the application has access to grows. This means that
some data is potentially sticky and only becomes sticky when the applica-
tion has access to enough cache. The amount of sticky and volatile data
in the cache therefore depends on how much cache an application has
access to, which is a function of what other applications are co-executing.

To explain the LRU model, we will first describe how to model shar-
ing within the volatile group and how the age of the group is determined.
We will then describe how sticky groups are modeled, and finally how
our solver uses this information to determine cache sharing.

Modeling Volatile Data

When applications do not reuse their data before it is evicted from the
cache, LRU caches degenerate into FIFO queues with data moving from
the MRU position to the LRU position before being evicted. Similar to
random replacement, the amount of cache allocated to an application
will be proportional to its fetch rate. This observation allows us to use
the method devised for random replacement to model cache sharing for
volatile data. Assuming that we know the amount of cache available to
volatile data3, Cv, we can solve Equation 1 for the volatile part of the

2At any given moment, the cache lines in a group will have different ages. It therefore
only makes sense to talk about the maximum age of a group.

3We can estimate the amount of sticky data each application has, and therefore
whatever is left of the cache is used for volatile data.

90

W0

Cache Size

X1 Y0 X0

{X0, Y0}:

{X1, Y1}:

Cs

Cs

Sticky Data Volatile Data

Volatile Data

Y1

X0Y0
X1

Fe
tc

h
R

at
e

Cache Size0 C

H
it

R
at

e Y1

0 C

W0

YXW

Figure 2: Fetch and hit rate curves for three sample applications. Application W and

X always miss in the shared cache, while Y misses only when it has less than c𝑛(Y1)
space in the cache. The cache allocations for the two stable cache sharing configurations

of X and Y are shown below.

cache. This allows us to estimate the amount of volatile data, cv, each
application has.

Since sticky data and volatile data from different applications com-
pete for cache space, we need to be able to compare their maximum
age. Because the cache degenerates into a FIFO queue for volatile data,
the maximum age of volatile elements can be determined using Little’s
law [9].4 Assuming that we know the total size of the volatile part of
the cache, Cv, and the total fetch rate into the cache, the maximum age
of all volatile cache lines, Av, is:

Av = Cv

F
(2)

Example 1: Consider application X and application W in Figure 2. Both
of the applications have fetch rates that are independent of cache size
and X has twice the fetch rate of W. Since the hit rate is zero for both

4Little’s law sets up a relationship between the number of elements in a queue (size),
the time spent in the queue (maximum age) and the arrival rate (fetch rate). The total
arrival rate into the queue is the sum of all fetch rates, F, in the system.

91

of them, neither reuses any data in the cache (i.e., all data is volatile).
Using the random replacement model for the volatile data, we conclude
that X gets twice the cache allocation of W (i.e., X uses two thirds of
the cache) causing the applications to stabilize at the solution {X0, W0}.
Since the entire cache is filled with volatile data, the maximum age of
volatile elements is described by:

Av = Cv

F
= C

f(X0) + f(W0)

2

Modeling Sticky Data

In most cases, there is both sticky and volatile data in the cache at the
same time. Unlike volatile data, sticky data stays in the cache because it
is reused while it is in the cache. When sticky and volatile cache lines
compete for cache space, the decision to let a sticky cache line remain
sticky depends on its age. A sticky cache line becomes volatile if it is
older than the oldest volatile cache line. In our model, we make this
decision for entire groups of cache lines with the same maximum age. A
group of sticky cache lines with the same maximum age, as, is allowed
to stay in the cache as sticky cache lines if it is younger than the oldest
volatile cache line:

as < Av (3)

Similar to volatile data, we can estimate themaximum age for a group
of sticky data using Little’s law if we know the size of the group and its
reuse rate. This can best be illustrated with an example:

Example 2: Application Y in Figure 2 does not reuse any data (its hit rate
is zero) when it has access to less cache than c(Y1). However, it reuses
all its data when it has access to more cache (its fetch rate is zero). This
means that it has one group of potentially sticky data. The size of the
group is c(Y1) and the aggregate reuse rate of all elements in the group
is its hit rate, h(Y1).

When Y starts it will bring its entire data set into the cache and start
reusing it, causing the data to become sticky. If X is then started, it will
first install data into the unused part of the cache. The size of Y’s sticky
data set will at this point be c(Y1) and the rest of the cache will be filled
with data belonging to X. Since X does not reuse its data, all its data will
be volatile. We obtain the ages of sticky, as, and volatile, Av, elements

92

when they start to compete for cache as follows:

as = c(Y1)
h(Y1)

Av = Cv

F
= C − c(Y1)

f(X1)

{X1, Y1} is a stable cache sharing configuration if Y’s sticky cache lines
are younger than X’s volatile cache lines. This means that Y is reusing
its data set frequently enough to prevent X from pushing it out of the
cache.

An interesting feature of this benchmark combination is that it can
have two stable cache sharing configurations. If X starts first and is al-
lowed to fill the cache with its volatile data, when Y starts, it will have
to compete with X to bring its data into the cache. At this point, the
entire cache consists of volatile data since Y has not installed enough of
its data to be able to reuse it before it is evicted from the cache. Since
X has a higher fetch rate than Y, it fetches data faster and will therefore
get more cache than Y. In this case, Y will never fit its entire group of
potentially sticky data, and its data it will instead remain volatile. Both
{X0, Y0} and {X1, Y1} are therefore valid sharing configurations, depend-
ing on the starting order. 2

In the examples so far, both of the benchmarks in a pair have either
had sticky or volatile data, but not both. Real applications typically have
both sticky and volatile data in the cache at the same time:

Example 3: Application Z in Figure 3 has two drops in its fetch rate curve,
which means that it has two groups of potentially sticky data. This can
happen in applications reusing two arrays of different size. For a cache
size of c(Z0), the application is able to fit its first group of data in the
cache (the fetch rate drops just before c(Z0)) and that group becomes
sticky. If the application has access to more cache than c(Z1), its fetch
rate drops to zero and all of its data becomes sticky. In order to calculate
the age, as, of a group of sticky data, we need to know how much that
group contributes to the total hit rate and how big the group is. Assuming
that we know the amount of sticky data in an application, cs, as a function
of cache size (we will show how to estimate this in Section 2), we can
calculate as(Z0) as:

as(Z0) = cs(Z0) − cs(Z0−)
h(Z0) − h(Z0−)

2

93

50%

Fe
tc

h
R

at
e

Cache Size0 C

Z0−

Z

Z0
Z1

H
it

R
at

e

Cache Size0 C

100%
Z1

Z0

Z0−

H
it

R
atio

0%

S
iz

e

StickyVolatile

Unused

Cache Allocation (Z)

0 CZ0 Z1

Z1−

Z1−

Sticky Data Cache Available

Figure 3: Z has two groups of sticky data of different sizes. When a group of sticky

data starts to fit in the cache, the fetch rate starts to drop and the hit ratio increases.

Whenever the hit ratio increases, the amount of volatile data at that point decreases (it

becomes sticky) by the same relative amount.

The age derived in the example above is simply a finite difference
approximation of a differential equation. In general, the access rate for
sticky elements is defined as:

as(𝑐) = dcs

dh
(4)

Equation 4 is actually a simplification that assumes that an applica-
tion’s execution rate does not change with cache size. However, execu-
tion rate generally increases as an application gets access to more cache.
This variation is accurately captured in our Cache Pirate input data. Not
compensating for the change in execution rate leads an erroneous esti-
mate of a block’s contribution to the total hit rate. We address this by
using the difference in hit ratio (hits per memory access) which is execu-
tion rate independent. We then scale the difference in hit ratio with the
application’s accesses rate (which is execution rate dependent) to get the
block’s contribution to the total hit rate.

94

Estimating Sticky Group Sizes

The amount of sticky data can be estimated from how an application’s
hit ratio changes with its cache allocation. The relative change in hit
ratio is proportional to the relative change in the sticky data.

Example 4: As seen in Figure 3, Z’s hit ratio increases in two steps. This
means that it has two groups of potentially sticky data. When it has
access to less cache than c(Z0), the hit ratio is zero and it has no sticky
data. The amount of sticky data can be broken down into three different
cases based on the cache allocation c:

0 ≤ 𝑐 < c(Z0)
Since the hit ratio is zero, there is no sticky data.

c(Z0) ≤ 𝑐 < c(Z1)
When the amount of cache is increased to c(Z0), the hit ratio in-
creases from 0% to 50% (i.e., 50% of the fetches become hits).
We would therefore expect 50% of the volatile data to become
sticky. Since the amount of volatile data just before Z0 is c(Z0),
the amount of sticky data in this range is 1

2c(Z0).

c(Z1) ≤ 𝑐
At c(Z1), all of the fetches become hits. The sticky data set size is
therefore c(Z1).

Using Z’s hit ratio function, ĥ, the reasoning above can be generalized
into:

cs(Z𝑥) − cs(Z𝑥−)
c(Z𝑥) − cs(Z𝑥−)

= ĥ(Z𝑥) − ĥ(Z𝑥−)
1 − ĥ(Z𝑥−)

2

The difference approximation above can be generalized into the fol-
lowing differential equation:

dcs

dc
1

c − cs = dĥ
dc

1
1 − ĥ

(5)

Putting It All Together

We have described how an LRU cache can be modeled by splitting it
into groups of cache lines with the same maximum age. Volatile data is
treated as a separate group of data where themaximum age is determined
by the total fetch rate into the cache. Each application’s sticky data is
allowed to stay in the cache as sticky data as long as its maximum age is

95

lower than themaximum age of any application’s volatile data, otherwise
it becomes volatile. This leads to the following requirement, which must
hold for every application, 𝑛, at steady state:

as
𝑛 < Av (6)

If the requirement does not hold for an application, its sticky data that
is too old to remain sticky becomes volatile.

Volatile data in the cache can be modeled using the model derived
for random replacement (Equation 1), that is:

f𝑛 = F cv
𝑛

Cv (7)

The total amount of cache an application has access to is the sum of
its sticky and volatile cache allocations:

c𝑛 = cs
𝑛 + cv

𝑛 (8)

Using the requirements defined above, we can find a sharing solution
using a numerical solver. The solver starts with an initial guess, wherein
the application that starts first has access to the entire cache5 and the
other applications do not have access to any cache. The initial guess
corresponds to the state of the cache just before a new application is
started, which enables us to find the correct solution if the application
mix has multiple solutions.

The solver then lets all applications compete for cache space by en-
forcing the age requirement between sticky and volatile cache lines. If
the age requirement can not be satisfied for an application, the solver
shrinks that application’s cache allocation until the remaining sticky data
satisfies the age requirement. If multiple applications fail to satisfy the
age requirement, we shrink the application with the oldest cache lines.
The cache freed by the shrinking operation is then distributed among all
applications by solving the sharing equations for the volatile part of the
cache.

The process of shrinking and growing the amount of cache allocated
to the applications is repeated until the solution stabilizes (i.e., no appli-
cation changes its cache allocation significantly).

Example 5: Assume that we run application Z from Figure 3 and X from
Figure 2. Z starts first. The solver will then make the following decisions
(illustrated in Figure 4):

5The start order can be generalized to more than two applications by first determining
the sharing for two applications and using that as the initial guess when start the next
application and so on.

96

0:

Sticky Data

Empty

Cs, c(Z1), cs(Z1)
as(Z0) as(Z1)

cs(Z0)

2: f(X)
c(Z)

as(Z0) f(Z)
Cs, cs(Z) c(X)

Volatile Data

1: f(X0)
Cs, c(Z1), cs(Z1)

as(Z0) as(Z1)
cs(Z0)

Volatile Data

3: f(X)
c(Z)

as(Z0) f(Z)
Cs, cs(Z) c(X)

Volatile Data

4: f(X)
c(Z)

as(Z0) f(Z)
Cs, cs(Z) c(X)

Volatile Data

Figure 4: Solver steps for determining cache sharing when running example applications

X and Z from Figure 2 and Figure 3 together. (See Example 5.)

0. Since Z starts first, it is given access to all cache and all its sticky
data will fit in the cache. This is the initial guess.

1. X starts and the random sharing equations are solved for the vola-
tile part of the cache. X fills the entire volatile part of the cache
with its data since Z has a fetch rate of 0.

2. Based on the access rates and group sizes, we compute that Z’s
oldest sticky cache lines are now older than the oldest volatile cache
line (i.e., the age requirement does not hold). Z can therefore not
keep all its sticky data in the cache. The solver decides to shrink Z
until the age condition can be satisfied. The condition is satisfied
when the second sticky group becomes volatile.

3. Sharing in the volatile part of the cache is updated using the ran-
dom model.

4. When the age conditions are satisfied, applying the random model
to the volatile part of the cache does not change cache allocations
and a stable solution is found.

2

97

L1 L2 Memory

Latency 3 cycles 30 cycles 200 cycles

Size 64 kB 8 MB

Line Size 64 B 64 B

Associativity 16 16

Table 1: M5 Simulator parameters

3 Evaluation (Simulator)

Experimental Setup

To evaluate the quality of the model, we simulated a simple in-order
quad-core processor without prefetching using M5 [1]. The simulated
processor implemented a snooping MOESI protocol with all L1 caches
connected to a shared L2 cache through a common bus. The simulator
does not enforce inclusion between cache levels. The detailed parame-
ters are listed in Table 1.

To obtain the input data for themodel, we simulated each application
running in isolation and changed the L2 size from 512 kB to 8MB in steps
of 512 kB and measured its cache behavior.

We evaluated our models against three different L2 replacement poli-
cies: random replacement, LRU, and the pseudo-LRU algorithm used in
the Intel Nehalem microarchitecture [6]. We included the pseudo-LRU
policy to determine if our LRUmodel generalizes to the hardware we use
for evaluating the model in Section 4. In our experiments, this pseudo-
LRU algorithm behaved very similar to normal LRU, so we will limit our
discussion to random and LRU.

We selected benchmarks with time-stable behavior from SPEC
CPU2006 and PARSEC, and tried to select applications with a wide va-
riety of fetch rate behaviors. Applications with high fetch rates or fetch
rates that change significantly when their cache allocation changes are
particularly interesting because they are affected by cache contention
the most. To avoid unstable start-up behavior, all benchmarks were fast
forwarded 85 billion instruction before starting the simulation. The sub-
sequent 2 billion memory accesses were used to drive the simulation.

To further stress our models, we included the two classes of micro-
benchmarks shown in Figure 5. The first class, block, repeatedly accesses
its data in a sequential order. This behavior causes the fetch ratio for LRU
caches to drop sharply when the cache size is larger than the data set size.
The block benchmark is particularly challenging for the LRU model for
two reasons: First, since it has a sharp edge on the fetch ratio curve, es-
timating group ages is hard as it involves taking a derivative of the curve

98

0%

5%

10%

15%

0 1 2 3 4 5 6 7 8

Fe
tc

h
e
s

R
at

io

Cache Size [MB]

(a) Block (5 MB)

0%

25%

50%

75%

100%

0 1 2 3 4 5 6 7 8

Fe
tc

h
e
s

R
at

io

Cache Size [MB]

Random LRU Nehalem

(b) Random (5 MB)

Figure 5: Shared cache fetch ratios for the block and random microbenchmarks.

at the point of the sharpest drop off. Second, as seen in Example 2, such
benchmarks have a tendency to induce multiple stable sharing configura-
tions in a given pair of benchmarks. The correct configuration generally
depends on which application started first.

The random microbenchmark class accesses its entire data set ran-
domly. This causes the fetch ratio to decrease linearly with cache size.
An interesting observation is that all three replacement policies behave
the same in this case. One of the main reasons to include this benchmark
is that its steep fetch ratio curve means that a small error in estimating
cache allocation will translate into a large error in fetch ratio. For exam-
ple, a 1MB error in predicted cache allocation would lead to a fetch ratio
error of 20 percentage points, which is larger than the fetch ratio of most
normal applications.

We ran all pairs of the following benchmarks from PARSEC: blacksc-
holes, bodytrack, streamcluster; SPEC CPU2006: astar, LBM, leslie3d,
libquantum, soplex; and the following microbenchmarks: block (3 MB,
5 MB, 7 MB), random (3 MB, 5 MB, 7 MB). Since the simulation time
needed to simulate all possible combinations of four applications would
be prohibitive, we limited our study to the groups shown in Table 2.

99

App 0 App 1 App 2 App 3

block 5 MB random 3 MB streamcluster bodytrack

bodytrack soplex astar lbm

bodytrack streamcluster blackscholes lbm

lbm leslie3d astar bodytrack

libquantum block 5 MB random 5 MB random 7 MB

libquantum lbm astar bodytrack

random 5 MB streamcluster astar leslie3d

random 7 MB lbm leslie3d bodytrack

random 3 MB block 5 MB lbm astar

streamcluster leslie3d soplex bodytrack

Table 2: Mixes of four applications

Simulation Results

Random Replacement

We simulated a random replacement cache and measured the cache al-
location and fetch ratio per co-scheduled application. Figure 6(a) shows
the predicted cache size versus simulated cache size and predicted fetch
ratio versus simulated fetch ratio for all pairs of applications. The better
a prediction, the closer it is to the diagonal. As seen in the figure, there
is an excellent agreement between the amount of cache used by the ap-
plications and that predicted by the random model. The average error
in cache size prediction as a fraction of the total cache size was 0.8%.

Some applications, such as the microbenchmarks in Figure 5, change
their fetch ratio significantly when there is only a slight change in cache
size. The effect an error in cache size has on the memory system will
therefore depend on the shape of an application’s miss ratio curve. In or-
der to more accurately assess how the model predicts cache performance,
we also evaluated how well the model predicts fetch ratio. We define the
relative fetch ratio error as the absolute difference in predicted and sim-
ulated fetch ratio over the simulated fetch ratio. It makes little sense
to look at relative errors for benchmarks with small fetch ratios, since
with a fetch ratio close to zero, even an insignificant error will cause the
relative error to explode. Excluding benchmarks with a simulated fetch
ratio less than 0.5%, we measure a relative fetch ratio error of 6.1%. The
average absolute error for the excluded benchmarks was 0.04%, which
corresponds to an insignificant difference in performance.

As seen in Figure 6(b), groups of four applications can be predicted
with similar accuracy. In this case, the average error in cache size was
0.9% and the average relative error in fetch ratio was 3.3%.

100

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

P
re

d
ic

te
d

S
iz

e
[M

B
]

Simulated Size [MB]

0 10 20 30 40 50
0

10

20

30

40

50

P
re

d
ic

te
d

Fe
tc

h
R

at
io

[%
]

Simulated Fetch Ratio [%]

5% Error 10% Error

(a) Two co-scheduled benchmarks

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

P
re

d
ic

te
d

S
iz

e
[M

B
]

Simulated Size [MB]

0 10 20 30 40 50
0

10

20

30

40

50

P
re

d
ic

te
d

Fe
tc

h
R

at
io

[%
]

Simulated Fetch Ratio [%]

5% Error 10% Error

(b) Four co-scheduled benchmarks

Figure 6: Predicted versus simulated sharing and fetch ratio for random replacement.

101

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

P
re

d
ic

te
d

S
iz

e
[M

B
]

Simulated Size [MB]

0 10 20 30 40 50
0

10

20

30

40

50

P
re

d
ic

te
d

Fe
tc

h
R

at
io

[%
]

Simulated Fetch Ratio [%]

5% Error 10% Error

(a) Two co-scheduled benchmarks

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

P
re

d
ic

te
d

S
iz

e
[M

B
]

Simulated Size [MB]

0 10 20 30 40 50
0

10

20

30

40

50

P
re

d
ic

te
d

Fe
tc

h
R

at
io

[%
]

Simulated Fetch Ratio [%]

5% Error 10% Error

(b) Four co-scheduled benchmarks

Figure 7: Predicted versus simulated sharing and fetch ratio for LRU replacement.

LRU Replacement

Figure 7(a) shows the predicted and simulated behavior for pairs of ap-
plications with LRU replacement. The scatter plot compares the sim-
ulator solutions with their predicted counterparts. The average error
in predicted cache size was 0.9% and the average relative error for the
fetch ratio prediction was 5.4%. Similar to the random replacement case,
we excluded applications with a fetch ratio lower than 0.5% from the
fetch ratio average. The average absolute error for the excluded bench-
marks was 0.05%. The model accurately solves the more complex task

102

0

1

2

3

4

0 5 10 15 20 25 30 35 40 45
0

25

50

75

100

Fe
tc

h
R

at
e

[k
C

yc
le

s−
1
]

C
ac

h
e

S
iz

e
[%

]

Time [GCycles]
F. Rate (libq.)

F. Rate (block)
Size (block)

Predicted Size

Figure 8: Fetch rate and cache sharing as a function of time for libquantum and the

5 MB block microbenchmark. The shaded part of the graph is the warm-up period

where libquantum is executes in isolation.

of modeling cache sharing for LRU caches, even the microbenchmarks
with sharp edges in their fetch ratio curves can be handled accurately.

As seen in Figure 7(b), the average error for groups of four appli-
cations is similar to when modeling random replacement. The average
error in cache size in this case is 1.3% and the average relative error in
fetch ratio is 4.2%.

The solver typically finds a solutionwithin 5 to 10 iterations. Our pro-
totype Python-based solver normally finds a solution in less than 100ms.

Multiple LRU Sharing Solutions

As seen in Section 2, some combinations of applications can result in
multiple stable sharing configurations. It turns out that such benchmark
combinations are uncommon, and we only observed such behavior for
microbenchmarks running in the simulator. In order for a pair of appli-
cations to have multiple stable sharing configurations, at least one of the
applications must have a sharp knee in its fetch rate curve. In that case,
the configuration the simulator finds will depend on the start order of
the applications. To find such application pairs, we ran every application
pair twice, starting one of the applications 5 billion cycles after the other.

Out of the 98 benchmark pairs, the simulator found multiple stable
solutions in three cases, all involving the 5MB block microbenchmark.
The model accurately found both solutions in all of these cases by mod-
eling the start order of the applications.

In two benchmark pairs, the simulator found a stable solution, but
later switched to a different solution. This can occur for applications,
which despite having fairly time stable behavior, have short hiccups
where their fetch rate temporarily drops. Figure 8 shows the 5MB
block microbenchmark running together with libquantum. In this case,

103

libquantum started first and was allowed to execute in isolation for 5 bil-
lion cycles before the block microbenchmark was started. When the
block application starts, its fetch rate immediately rises and stays high
since it is unable to make its data sticky. Later libquantum has a short
drop in its fetch rate which allows the blockmicrobenchmark to install its
entire data set into the cache and stabilize at the second solution. The
model, being unaware of libquantum’s time-varying behavior, predicts
that the simulator will stay in the first solution.

In addition to the five benchmark pairs where the simulator found
multiple solutions, our model found an additional solution in four other
benchmark pairs. As in the cases where the simulator found multiple
solutions, all of these cases involved the 5MB block microbenchmark.
The main reason for the additional solutions found by the model is input
data limitations. The model uses sparse data collected for a limited set
of cache sizes for each benchmark. This makes it feasible to apply the
model to real-world systems, but causes numerical problems for bench-
marks with sharp edges in their fetch rate curves. For example, inaccura-
cies in the input data caused the model to predict two sharing configura-
tions when running the 5MB block microbenchmark together with the
7MB random microbenchmark.

4 Evaluation (Hardware)

Experimental Setup

Our evaluation system consisted of a 2.4GHz Intel Xeon E5620 system
(Westmere) with 4 cores and 6GB DDR3 memory. Each core has a
private 32 kB L1 data cache and a private 256 kB L2 cache. All four
cores share a 12MB 16-way L3 cache with a pseudo-LRU replacement
policy.

Our cache sharing model requires information about application
fetch rate, access rate and hit ratio as a function of cache size. We used
Cache Pirating [6] to measure this data for different cache sizes in steps
16 steps of 768 kB (the equivalent of one way) up to 12MB.

We used the same benchmarks in the hardware study and the simu-
lation study. However, we increased the size of the microbenchmarks’
data set by 50% to better stress the 50% larger shared last-level cache.

While measuring the microbenchmarks, we discovered that the
Cache Pirate slightly overestimates working set sizes. The average er-
ror in working set for the random microbenchmark was 256 kB due to
the Pirate application and the monitoring framework using some of the
shared cache. We compensated for this error by shrinking the total cache
size in the model by this amount and offsetting the input data.

104

0

20

40

60

80

100

0 20 40 60 80 100

P
re

d
ic

te
d

[%
]

Measured [%]
0 5 10 15 20 25

0

5

10

15

20

25

P
re

d
ic

te
d

[%
]

Measured [%]
5% Error 10% Error

(a) Two co-scheduled benchmarks

0

20

40

60

80

100

0 20 40 60 80 100

P
re

d
ic

te
d

[%
]

Measured [%]
0 5 10 15 20 25

0

5

10

15

20

25

P
re

d
ic

te
d

[%
]

Measured [%]
5% Error 10% Error

(b) Four co-scheduled benchmarks

Figure 9: Predicted vs. measured fetch ratio for applications running on an Intel

Xeon E5620 based system.

Results

Figure 9(a) compares the predicted and measured fetch ratio of pairs
of co-scheduled applications. We do not show the amount of cache al-
located to each application since there is no accurate way to measure
this on the hardware. Unlike the simulator, we only found one solution
for each benchmark pair. We believe that the reason for this is that the
fetch rate curves of the applications running on our reference hardware
do not have as sharp edges as in the simulator. The average relative error

105

0

5

10

15

0 5 10 15

P
re

d
ic

te
d

[G
B

/s
]

Measured [GB/s]

Fetch Rate

0 1 2 3 4
0

1

2

3

4

P
re

d
ic

te
d

[I
P
C

]

Measured [IPC]

Throughput

5% Error
10% Error

Bandwidth Limited

Figure 10: Estimated bandwidth vs. measured bandwidth and estimated IPC vs. mea-

sured IPC for pairs of benchmarks running on an Intel Xeon E5620 based system. The

gray area indicates the bandwidth limit.

in predicted fetch ratio was 7.1%. Similar to the simulator evaluation,
we excluded applications with a fetch ratio lower than 0.5% from the
average. Figure 9(b) shows the results for groups of four co-scheduled
applications. The average fetch ratio error was 6.7%.

Estimating Bandwidth and Throughput

Knowing how applications share cache allows us to predict other perfor-
mance metrics, such as bandwidth requirements and throughput. The
data measured using Cache Pirating contains information about each ap-
plication’s individual CPI and bandwidth requirement as a function of
cache size. Since we can predict each application’s cache allocation, we
can trivially find its bandwidth demand. Assuming that a mix is not band-
width limited, we can calculate the combined IPC of the mix (through-
put) and its expected bandwidth usage.

Knowing the combined bandwidth demand of an applicationmix can
guide a scheduler to avoid mixes with bandwidth demands too close to
the system’s bandwidth limitation. For mixes well below that limitation,
our throughput estimates should be accurate enough to find the best
mixes.

We estimated the real-world bandwidth limit of our reference sys-
tem to approximately 12GB/s using the STREAM benchmark [12]. We
consider an application mix to be bandwidth limited if it uses more than
90% of the maximum bandwidth.

106

Figure 10 compares the combined bandwidth and throughput of our
estimation with the corresponding numbers measured on real hardware.
As seen in the figure, as long as the estimated bandwidth is low enough
(below 11GB/s), our bandwidth estimate is quite accurate. Excluding
the mixes with a too high bandwidth demand, we can predict the band-
width of a mix with an average relative error of less than 5.9% and
throughput with an average error less than 2.5%.

5 Related Work

Cache sharing models can be divided into two categories: trace driven
and high-level data driven. The trace driven models generally use mem-
ory access traces or stack distance6 traces. The benefit of using traces
is that they contain detailed information about the execution. Unfor-
tunately, acquiring a memory access trace is slow and storage intensive.
Using high-level data, such as sampled memory accesses or statistics pro-
vided by performance counters, has become a common approach to re-
duce data collection overhead.

There are several models [2–4, 17] using stack distance traces. Chan-
dra et al. [2] pioneered the field with a statistical model that estimates the
probability that an access becomes a miss by prolonging its stack distance
with the expected number of accesses performed by other applications.
One drawback with their model is that it assumes that an application’s
execution rate is independent of the amount of cache it has access to.
Chen and Aamodt [3, 4] extended Chandra’s model by including vari-
able execution rate. They also improved the accuracy of the model for
low cache associativity by taking the access distribution across sets into
account.

The method most similar to ours is CAMP [19] by Xu et al. They
use high-level input data, similar to the input data used by our model
to model sharing among pairs of applications. However, their model de-
pends on a linear approximation of CPI as a function of fetch ratio. Such
an approximation is often inaccurate for processors with out-of-order ex-
ecution and prefetching. We do not need to model execution rate as this
is implicit in our input data. Xu et al. also evaluate two simpler models,
which assume that an application’s cache share is either proportional to
its access rate or its fetch rate. The latter is equivalent to the model we
use for random caches, but is applied to LRU caches and approximates
fetch rates using their linear execution rate model.

6A stack distance is the number of unique between two accesses to the same cache
line.

107

Eklöv et al. proposed a statistical cache sharing model [5] using mem-
ory access samples, which can be measured with low overhead. They use
a performance model similar to the one used by Xu et al. to estimate
the relative execution rate of co-scheduled applications and merge the
sampled access streams from each of them. Unfortunately, since they
use a linear approximation of execution rate, they suffer from the same
drawbacks as the model by Xu et al.

Two recent works focus on estimating how resource contention af-
fects performance. Mars et al. [10] use a stress benchmark to induce
contention in an application and then measure its slowdown. The slow-
down is used as a contention-sensitivity metric which can be used to
guide schedulers. Unlike our method, they do not try to estimate the
performance of specific combinations of applications. Instead they focus
on a general classification of applications as either being sensitive or insen-
sitive to contention. The approach by Van Craeynest and Eeckhout [16]
is more similar to our method in that they estimate the throughput of
mixes of applications. A major difference between our methods is that
they depend on a single high-fidelity simulation to generate the applica-
tion profiles used by their model, whereas we measure our input data
with low overhead on the target system.

6 Future Work

We are currently working on extending our models to handle time-
varying application behavior. A simple approach would be to slice appli-
cations into time windows and estimate sharing between windows. Such
an approach would work, however, the amount of data needed would
most likely be prohibitively large. Instead, we envision using phase in-
formation, which would enable us to analyze larger regions of stable be-
havior.

Another exciting direction is to extend the model to more accurately
predict throughput for bandwidth limited mixes. This, however, most
likely requires a detailed analytical performance model of the processor
or performance data as a function of bandwidth.

108

Acknowledgments

The simulations were performed on resources provided by the Swedish
National Infrastructure for Computing (SNIC) at Uppsala Multidisci-
plinary Center for Advanced Computational Science (UPPMAX). This
workwas financed by theCoDeR-MP project and theUPMARC research
center.

References

[1] Nathan L. Binkert, Ron G. Dreslinski, Lisa R. Hsu, Kevin T. Lim,
Ali G. Saidi, and Steven K. Reinhardt. “The M5 Simulator: Model-
ing Networked Systems”. In: IEEE Micro 26.4 (2006), pp. 52–60.
DOI: 10.1109/MM.2006.82.

[2] Dhruba Chandra, Fei Guo, Seongbeom Kim, and Yan Solihin.
“Predicting Inter-Thread Cache Contention on a Chip Multi-
Processor Architecture”. In: Proc. International Symposium on
High-Performance Computer Architecture (HPCA). 2005. DOI: 10.
1109/HPCA.2005.27.

[3] Xi E. Chen and TorM. Aamodt. “A First-Order Fine-GrainedMul-
tithreaded Throughput Model”. In: Proc. International Symposium
on High-Performance Computer Architecture (HPCA). 2009. DOI:
10.1109/HPCA.2009.4798270.

[4] Xi E. Chen and Tor M. Aamodt. “Modeling Cache Contention
and Throughput of Multiprogrammed Manycore Processors”. In:
IEEE Transactions on Computers PP.99 (2011). DOI: 10.1109/TC.
2011.141.

[5] David Eklov, David Black-Schaffer, and Erik Hagersten. “Fast
Modeling of Cache Contention in Multicore Systems”. In: Proc.
International Conference on High Performance and Embedded Ar-
chitecture and Compilation (HiPEAC). 2011, pp. 147–157. DOI:
10.1145/1944862.1944885.

[6] David Eklov, Nikos Nikoleris, David Black-Schaffer, and Erik
Hagersten. “Cache Pirating: Measuring the Curse of the Shared
Cache”. In: Proc. International Conference on Parallel Processing
(ICPP). 2011, pp. 165–175. DOI: 10.1109/ICPP.2011.15.

[7] F. N. Fritsch and R. E. Carlson. “Monotone Piecewise Cubic Inter-
polation”. In: SIAM Journal on Numerical Analysis 17.2 (1980).
DOI: 10.1137/0717021.

109

http://dx.doi.org/10.1109/MM.2006.82
http://dx.doi.org/10.1109/HPCA.2005.27
http://dx.doi.org/10.1109/HPCA.2005.27
http://dx.doi.org/10.1109/HPCA.2009.4798270
http://dx.doi.org/10.1109/TC.2011.141
http://dx.doi.org/10.1109/TC.2011.141
http://dx.doi.org/10.1145/1944862.1944885
http://dx.doi.org/10.1109/ICPP.2011.15
http://dx.doi.org/10.1137/0717021

[8] Aamer Jaleel, William Hasenplaugh, Moinuddin Qureshi, Julien
Sebot, Jr Simon Steely, and Joel Emer. “Adaptive Insertion Policies
for Managing Shared Caches”. In: Proc. International Conference on
Parallel Architectures and Compilation Techniques (PACT). 2008,
pp. 208–219. DOI: 10.1145/1454115.1454145.

[9] John D. C. Little. “A Proof for the Queuing Formula: L = 𝜆 W”.
In: Operations Research 9.3 (1961), pp. 383–387.

[10] Jason Mars, Lingjia Tang, and Mary Lou Soffa. “Directly Char-
acterizing Cross Core Interference Through Contention Synthe-
sis”. In: Proc. International Conference on High Performance and
Embedded Architecture and Compilation (HiPEAC). 2011. DOI:
10.1145/1944862.1944887.

[11] Jason Mars, Neil Vachharajani, Robert Hundt, and Mary Lou
Soffa. “Contention Aware Execution”. In: Proc. International Sym-
posium on Code Generation and Optimization (CGO). 2010. DOI:
10.1145/1772954.1772991.

[12] John D. McCalpin. STREAM: Sustainable Memory Bandwidth in
High Performance Computers. Technical Report. University of Vir-
ginia, 1991–2007. URL: http : / / www . cs . virginia . edu /
stream/.

[13] Moinuddin K. Qureshi and Yale N. Patt. “Utility-Based Cache Par-
titioning: A Low-Overhead, High-Performance, Runtime Mecha-
nism to Partition Shared Caches”. In: Proc. Annual International
Symposium on Microarchitecture (MICRO). 2006, pp. 423–432.
DOI: 10.1109/MICRO.2006.49.

[14] Andreas Sandberg, David Eklöv, and Erik Hagersten. “Reduc-
ing Cache Pollution Through Detection and Elimination of Non-
Temporal Memory Accesses”. In: Proc. High Performance Comput-
ing, Networking, Storage and Analysis (SC). 2010. DOI: 10.1109/
SC.2010.44.

[15] David Tam, Reza Azimi, Livio Soares, and Michael Stumm. “Man-
aging Shared L2 Caches on Multicore Systems in Software”. In:
Proc. Workshop on the Interaction between Operating Systems and
Computer Architecture (WIOSCA). 2007.

[16] Kenzo Van Craeynest and Lieven Eeckhout. “The Multi-Program
Performance Model: Debunking Current Practice in Multi-Core
Simulation”. In: Proc. International Symposium on Workload Char-
acterization (IISWC). 2011, pp. 26–37. DOI: 10 . 1109 / IISWC .
2011.6114194.

110

http://dx.doi.org/10.1145/1454115.1454145
http://dx.doi.org/10.1145/1944862.1944887
http://dx.doi.org/10.1145/1772954.1772991
http://www.cs.virginia.edu/stream/
http://www.cs.virginia.edu/stream/
http://dx.doi.org/10.1109/MICRO.2006.49
http://dx.doi.org/10.1109/SC.2010.44
http://dx.doi.org/10.1109/SC.2010.44
http://dx.doi.org/10.1109/IISWC.2011.6114194
http://dx.doi.org/10.1109/IISWC.2011.6114194

[17] Xiaoya Xiang, Bin Bao, Tongxin Bai, Chen Ding, and Trishul
Chilimbi. “All-Window Profiling and Composable Models of
Cache Sharing”. In: Proc. Symposium on Principles and Practice of
Parallel Programming (PPoPP). 2011. DOI: 10 . 1145 / 1941553 .
1941567.

[18] Yuejian Xie and Gabriel H Loh. “Dynamic Classification of Pro-
gram Memory Behaviors in CMPs”. In: Proc. Workshop on Chip
Multiprocessor Memory Systems and Interconnects (CMP-MSI).
2008.

[19] Chi Xu, Xi Chen, Robert P. Dick, and Zhuoqing Morley Mao.
“Cache Contention and Application Performance Prediction for
Multi-Core Systems”. In: Proc. International Symposium on Perfor-
mance Analysis of Systems & Software (ISPASS). 2010. DOI: 10.
1109/ISPASS.2010.5452065.

[20] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova.
“Addressing Shared Resource Contention in Multicore Processors
via Scheduling”. In: Proc. Internationla Conference on Architectural
Support for Programming Languages and Operating Systems (ASP-
LOS). 2010. DOI: 10.1145/1736020.1736036.

111

http://dx.doi.org/10.1145/1941553.1941567
http://dx.doi.org/10.1145/1941553.1941567
http://dx.doi.org/10.1109/ISPASS.2010.5452065
http://dx.doi.org/10.1109/ISPASS.2010.5452065
http://dx.doi.org/10.1145/1736020.1736036

PAPER III

Modeling Performance Variation

Due to Cache Sharing in

Multicore Systems

Andreas Sandberg

Andreas Sembrant

David Black-Schaffer

Erik Hagersten

©2013 IEEE. Reprinted, with permission, from HPCA’13, February 23–27, 2013.

DOI: 10.1109/HPCA.2013.6522315

http://dx.doi.org/10.1109/HPCA.2013.6522315

Abstract— Shared cache contention can cause significant variability
in the performance of co-running applications from run to run. This
variability arises from different overlappings of the applications’ phases,
which can be the result of offsets in application start times or other delays
in the system. Understanding this variability is important for generating
an accurate view of the expected impact of cache contention. However,
variability effects are typically ignored due to the high overhead of mod-
eling or simulating the many executions needed to expose them.

This paper introduces a method for efficiently investigating the per-
formance variability due to cache contention. Our method relies on in-
put data captured from native execution of applications running in iso-
lation and a fast, phase-aware, cache sharing performance model. This
allows us to assess the performance interactions and bandwidth demands
of co-running applications by quickly evaluating hundreds of overlap-
pings.

We evaluate our method on a contemporary multicore machine and
show that performance and bandwidth demands can vary significantly
across runs of the same set of co-running applications. We show that our
method can predict application slowdown with an average relative error
of 0.41% (maximum 1.8%) as well as bandwidth consumption. Using
our method, we can estimate an application pair’s performance variation
213x faster, on average, than native execution.

1 Introduction

Shared caches in contemporary multicores have repeatedly been shown
to be critical resources for performance [8, 15, 17, 23, 28]. A signifi-
cant amount of research has investigated the impact of cache sharing on
application performance [11, 12, 23, 30]. However, most previous re-
search provides a single value for the slowdown of an application pair due
to cache sharing and ignores the variability that occurs across multiple
runs. This variability occurs due to different overlappings of application
phases that occur when they are offset in time. As the different phases
have varying sensitivities to contention for the shared cache, the result is
a wide range of slowdowns for the same application pair.

In multicore systems, there can be large performance variations due
to cache contention, since an application’s performance depends on how
its memory accesses are interleaved with other applications’ memory ac-
cesses. For example, when running astar/lakes and bwaves from SPEC
CPU2006, we observe an average slowdown of 8% for astar compared to
running it in isolation. However, the slowdown can vary between 1% and
17% depending on how the two applications’ phases overlap. Figure 1

114

0

5

10

15

20

25

30

0 5 10 15 20

2 7.7 17

P
o
p
u
la

ti
o
n

[%
]

Slowdown [%]

A
ve

ra
ge

Figure 1: Performance distribution for astar co-running together with bwaves on an

Intel Xeon E5620 based system. Ignoring performance variability can be misleading, since

the average (7.7%) hides the fact that the performance can vary between 1% and 17%

depending on how the two applications’ phases overlap.

shows astar’s slowdown distribution based on 100 runs with different
offsets in starting times. A developer assessing the performance of these
applications could draw the wrong conclusions from a single run, or even
a few runs, since the probability of measuring a slowdown smaller than
2% is more than 25%, while the average slowdown is almost 8% and the
maximum slowdown is 17%.

In order to accurately estimate the performance of a mixed workload,
we need to run it multiple times and estimate its performance distribu-
tion. This is a both time- and resource-consuming process. The dis-
tribution in Figure 1 took almost seven hours to generate; our method
reproduces the same performance distribution in less than 40 s.

To do this, we combine the cache sharing model proposed by
Sandberg et al. [16], the phase detection framework developed by
Sembrant et al. [19], and the co-execution phase optimizations proposed
by Van Biesbrouck et al. [25]. This allows us to efficiently predict the
performance and bandwidth requirements of mixed workloads. In addi-
tion, the input data to the cache model is captured using low-overhead
profiling [7] of each application running in isolation. This means that
only a small number of profiling runs need to be done on the target ma-
chine. The modeling can then be performed quickly for a large number
of mixed workloads and runs.

The main contributions of this paper are:

• An extension to a statistical cache-sharing model [16] to handle
time-dependent execution phases.

115

• A fast and efficient method to predict the performance variations
due to shared cache contention on modern hardware by combining
a cache sharing model [16] with phase optimizations [19, 25].

• A comparison with previous cache-sharing methods [16] demon-
strating a 2.78× improvement in accuracy (the relative error is re-
duced from 1.14% to 0.41%) and a 3.5× reduction in maximum
error (from 6.3% to 1.8%).

• An analysis of how different types of phase behavior impact the
performance variations in mixed workloads.

2 Putting it Together

Our method combines and extends three existing pieces of infrastruc-
ture: a cache sharing model [16], a low-overhead cache analysis tool [7],
and a phase detection framework [19]. In this section, we describe the
different pieces and how we extend them.

Cache Sharing

We use the cache sharing model proposed by Sandberg et al. [16] for
cache modeling. It accurately predicts the amount of cache used, CPI,
and bandwidth demand for an application in a mixed workload of co-
executing single-threaded applications. The input to the model is a set
of independent application profiles. These profiles contain information
about how the miss rate (misses per cycle) and hit rate (hits per cycle)
vary for an application as a function of cache size. We use the Cache
Pirating [7] technique (discussed below) to capture the model’s input
data.

The model conceptually partitions the cache into two parts with dif-
ferent reuse behavior. The model keeps frequently reused data safe from
replacements, while less frequently reused data shares the remaining
cache space proportionally to its application’s miss rate. The partition-
ing between frequently reused data and infrequently reused data is an
application property that is cache size dependent (i.e., the partitioning
depends on howmuch cache an application receives). Themodel uses an
iterative solver that first solves cache sharing for the infrequently reused
data and then updates partitioning between frequently reused data and
infrequently reused data.

The model however only works on phase-less applications where the
average behavior is representative of the entire application. In practice,
most applications have phases. To handle this, we extend the model by

116

slicing applications into multiple small time windows. As long as the
windows are short enough, the model’s assumption of constant behav-
ior holds within the window. We then apply the model to a set of co-
executing windows instead of data averaged across the entire execution.

Cache Pirating

The input to the cache sharing model is an application profile with in-
formation about cache miss rates and hit rates as a function of cache size.
Traditionally, such profiles have been generated through simulation, but
such an approach is slow and it is difficult to build accurate simulators for
modern processor pipelines and memory systems. Instead, we use Cache
Pirating [7] to collect the data. Cache Pirating solves both problems by
measuring how an application behaves as a function of cache size on the
target machine with very low overhead.

Cache Pirating uses hardware performance monitoring facilities to
measure target application properties at runtime, such as cache misses,
hits, and execution cycles. To measure this information for varying cache
sizes, Cache Pirating co-runs a small cache intensive stress application
with the target application. The amount of cache available to the target
application is then varied by changing the cache footprint of the stress ap-
plication. This allows Cache Pirating tomeasure any performancemetric
exposed by the target machine as a function of available cache size.

The cache pirate method produces average measurements for an en-
tire application run. This is illustrated in Figure 2(a). It shows CPI as
a function of cache size for astar. The solid black line (Average) is the
output produced with Cache Pirating.

Just examining the average behavior can however be misleading since
most applications have time-dependent behavior. Figure 2(b) instead
shows astar’s CPI as a function of both time and cache size. As seen
in the figure, the application displays three different phases of behavior:
some parts of the application execute with a very high CPI (phase 𝖠 &
phase 𝖡), while other parts execute with a very low CPI (phase 𝖢). This
information is lost unless time is taken into account.

In this paper, we extend the cache pirate method to produce time-
dependent data by dividing the execution into sample windows by sam-
pling the performance counters at regular intervals.

Phase Detection

A naive approach to phase-aware cache modeling would be to model
the effect of every pair of measured input sample windows. However,
to make the analysis more efficient, we incorporate application phase

117

0

1

2

3

4

0 2 4 6 8 10 12

C
P
I

Cache Size [MB]

Average
Phase 𝖠

Phase 𝖡
Phase 𝖢

(a) Time oblivious

𝖠1 𝖡1 𝖢1 𝖠2 𝖡2

0 50
100

150
200

250
300

350

Time in Billions of Instructions

0

2

4

6

8

10

12

C
ac

h
e

S
iz

e
[M

B
]

0

1

2

3

4

C
P
I

Detected Phases

(b) Time aware

Figure 2: Performance (CPI) as a function of cache size as produced by Cache Pirat-

ing. Figure (a) shows the time-oblivious application average as a solid line. Figure (b)

shows the time-dependent variability of the cache sensitivity and the phases identified

by ScarPhase above. The behavior of the three largest phases vary significantly from

the average as can be seen by the dashed lines in Figure (a).

information. This enables us to analyze multiple sample windows with
similar behavior at the same time, which reduces the number of times
we need to invoke the cache sharing model.

We use the ScarPhase [19] library to detect and classify phases. Scar-
Phase is an execution-history based, low-overhead (2%), online phase-
detection library. It examines the application’s execution path to de-
tect hardware independent phases [14, 22]. Such phases can be readily
missed by performance counter based phase detection, while changes in
executed code reflect changes in many different metrics [5, 9, 18, 20–
22]. To leverage this, ScarPhase monitors what code is executed by di-
viding the application into windows and using hardware performance

118

counters to sample which branches execute in a window. The address
of each branch is hashed into a vector of counters called a basic block
vector (BBV) [21]. Each entry in the vector shows how many times
its corresponding branches were sampled during the window. The vec-
tors are then used to determine phases by clustering them together us-
ing an online clustering algorithm [6]. Windows with similar vectors are
then grouped into the same cluster and considered to belong to the same
phase.

The phases detected by ScarPhase can be seen in the top bar in Fig-
ure 2(b) for astar, with the longest phases labeled. This benchmark has
three major phases; 𝖠, 𝖡 and 𝖢, all with different cache behaviors. To
highlight the differences in CPI, we have plotted the average CPI of each
phase in Figure 2(a). For example, phase 𝖠 runs slower than 𝖢, since it
has a higher CPI. Phase 𝖡 is more sensitive to cache-size changes than
phase 𝖠 since phase 𝖡’s CPI decreases with more cache.

The same phase can occur several times during execution. For exam-
ple, phase 𝖠 recurs two times, once in the beginning and once at the end
of the execution. We refer to multiple repetitions of the same phase as
instances of the same phase, e.g., 𝖠1 and 𝖠2 in Figure 2(b).

In addition, Figure 2(b) also demonstrates the limitation of defining
phases based on changes in hardware-specific metrics. For example, the
CPI is very similar from 325 to 390 billion instructions when using 12MB
of cache (the gray rectangle), but clearly different when using less than
4MB (the black rectangle). This difference is even more noticeable in
Figure 2(a) when comparing phase 𝖠 and 𝖡. A phase detection method
looking at only the CPI would draw the conclusion that phase 𝖠 and 𝖡
are the same phase when the application receives 12MB of cache, while
in reality they are two very different phases. It is therefore important
to find phases that are independent of the execution environment (e.g.,
co-scheduling).

3 Time Dependent Cache Sharing

The key difficulty in modeling time-dependent cache sharing is to deter-
mine which parts of the application (i.e., sample windows or phases) will
co-execute. Since applications typically execute at different speeds de-
pending on phase, we can not simply use the ith sample windows for each
application since they may not overlap. For example, consider two appli-
cations with different executions rates (e.g., CPIs of 2 and 4), executing
sample windows of 100million instructions. The slower application with
a CPI of 4 will take twice as long to finish executing its sample windows
as the one with a CPI of 2. Furthermore, when they share a cache they
impact each others execution rates. Instead, we advance time as follows:

119

1. Determine the cache sharing using the model for the current win-
dows and the resulting CPI for each application due to its shared
cache allocation.

2. Advance the fastest application (i.e., the one with lowest CPI) to
its next sample window. The slower applications will not have
had time to completely execute their windows. To handle this,
their windows are first split into two smaller windows so that the
first window ends at the same time the fastest applications sample
window. Finally, time is advanced to the beginning of the latter
windows.

This means that the cache model is applied several times per sample
window, since each window is usually split at least twice. For exam-
ple, when modeling the slowdown of astar co-executing together with
bwaves, we invoke the cache sharing model roughly 13 000 times while
astar only has 4 000 sample windows by itself.

We refer to the method described so far as the window-based meth-
od (Window) in the rest of paper. In the rest of this section, we will
introduce two more methods, the dynamic-window-based method (Dy-
namic Window) and the phase-based method (Phase), which both use
phase information to improve the performance by reducing number of
times the cache sharing model needs to be applied1.

Dynamic-Windows: Merging Sample-Windows

To improve performance we need to reduce the number of times the
cache sharing model is invoked. To do this, we merge multiple adjacent
sample windows belonging to the same phase into larger windows, a dy-
namic window. For example, in astar (Figure 2), we consider all sample
windows in 𝖠1 as one unit (i.e., the average of the sample windows) in-
stead of looking at every individual sample window within the phase.
Merging consecutive windows within a phase assumes that the behav-
ior is stable within a that instance (i.e., all windows have similar behav-
ior). This is usually true and does not significantly affect the accuracy
of the method. However, compared to the window-based method, it is
dramatically faster. For example, modeling astar running together with
bwaves we reduce the number of times the cache sharing model is used
from 13000 to 520, which leads to 25× speedup over the window-based
method.

1The cache sharing model is implemented in Python and takes approximately 88ms
per invocation on our reference system (see Section 4).

120

0

0
.51

1
.52

0

60

12
0

18
0

24
0

30
0

36
0

Bandwidth[GB/s]

T
im

e
[s

]

(a
)

S
in

gl
e
-P

h
as

e
(o

m
n
e
tp

p
)

012345

0

12
0

24
0

36
0

48
0

60
0

72
0

84
0

Bandwidth[GB/s]

T
im

e
[s

]

(b
)

D
u
al

-P
h
as

e
(b

w
av

e
s)

0

0
.51

1
.5

0

60

12
0

18
0

Bandwidth[GB/s]

T
im

e
[s

]

(c
)

Fe
w

-P
h
as

e
(a

st
ar

/
la

ke
s)

01234

0

60

12
0

18
0

24
0

30
0

36
0

42
0

Bandwidth[GB/s]

T
im

e
[s

]

(d
)

M
u
lt

i-
P

h
as

e
(m

cf
)

0

0
.0

1

0
.0

2

0
.0

3

0
.0

4

0

10

20

30

40
Bandwidth[GB/s]

T
im

e
[s

]

(e
)

T
ar

ge
t

1
(b

zi
p

2
/

ch
ic

ke
n
)

012345

0

5

10

15

20

25

Bandwidth[GB/s]

T
im

e
[s

]

(f
)

T
ar

ge
t

2
(g

cc
/

1
6

6
)

F
ig

u
re

3
:

B
an

d
w

id
th

u
sa

ge
ac

ro
ss

th
e

w
h
o

le
e
x
e
cu

ti
o

n
o

f
o

u
r

si
x

b
e
n
ch

m
ar

k
ap

p
lic

at
io

n
s,

in
cl

u
d

in
g

th
e

fo
u
r

in
te

rf
e
re

n
ce

ap
p

lic
at

io
n
s.

D
e
te

ct
e
d

p
h
as

e
s

ar
e

sh
o

w
n

ab
o

ve
.

T
h
e

S
in

gl
e
-P

h
as

e
,
D

u
al

-P
h
as

e
,
Fe

w
-P

h
as

e
,
an

d
M

u
lt

i-
P

h
as

e
b

e
h
av

io
r

is
cl

e
ar

ly
vi

si
b

le
fo

r
th

e
in

te
rf

e
re

n
ce

ap
p

lic
at

io
n
s.

121

Phase: Reusing Cache-Sharing Results

The performance can be further improved by merging the data for all
instances of a phase. For example, when considering astar (Figure 2), we
consider all phase instances of 𝖠 (i.e., 𝖠1 + 𝖠2) as one unit. This makes
the assumption that all instances of the same phase have similar behavior
in an execution. This is not necessarily true for all applications (e.g., same
function but different input data), but works well in practice.

Looking at whole phases does not change the number of times we
need to determine an applications cache sharing. It does however enables
us to reuse cache sharing results for co-executing phases that reappear
later [25]. For example, when astar’s phase 𝖠1 co-executes with bwave’s
phase 𝖡, we can save the cache sharing result, and later reuse the result
if the second instance (𝖠2) co-executes with bwaves 𝖡.

In the example with astar and bwaves, we can reuse the results from
previous cache sharing solutions 380 times. We therefore only need to
run the cache sharing model 140 times. The performance of the phase-
based method is highly dependent on an application’s phase behavior,
but it normally leads to a speed-up of 2–10× over the dynamic-window
method.

The main benefit of the phase-based method is when determining
performance variability of a mix. In this case, the same mix is run sev-
eral times with slightly different offsets in starting times. The same co-
executing phases will usually reappear in different runs. For example,
when modeling 100 different runs of astar and bwaves, we need to evalu-
ate 1 400 000 co-executing windows, but with the phase-based method
we only need to run the model 939 times.

In addition to reducing the number of model invocations, using
phases reduces the amount of data needed to run the model. Instead
of storing a profile per sample window, all sample windows in one phase
can be merged. This typically leads to a 100–1000× size reduction in in-
put data. For example, bwaves, which is a long running benchmark with
a large profile, reduces its profile size from 57MB to 82 kB.

4 Evaluation

To evaluate our method we compare the overhead and the accuracy
against results measured on real hardware. We ran each target application
together with an interference application and measured the behavior of
the target application. In order to measure the performance variability,
we started the applications with an offset by first starting the interference

122

R
E

F
S

in
g
le

-P
h

a
se

(o
m

n
e
tp

p
)

D
u

a
l-

P
h

a
se

(b
w

a
v
e
s)

F
e
w

-P
h

a
se

(a
st

a
r)

M
u

lt
i-

P
h

a
se

(m
c
f)

T
im

e
#

M
o
d
e
l
In

vo
ca

ti
o
n
s

S
p
e
e
d
u
p

#
M

o
d
e
l
In

vo
ca

ti
o
n
s

S
p
e
e
d
u
p

#
M

o
d
e
l
In

vo
ca

ti
o
n
s

S
p
e
e
d
u
p

#
M

o
d
e
l
In

vo
ca

ti
o
n
s

S
p
e
e
d
u
p

IS
O

W
D

P
P

W
D

P
P

W
D

P
P

W
D

P
P

as
ta

r
5
.9

h
7
2
3
k

3
0
2

8
4
.0

2
.1

k
×

1
.4

M
1
2
3
k

9
3
8

8
8
.7

×
7
9
7
k

1
.8

k
4
6
0

5
0
6
×

5
7
5
k

6
.9

k
4
6
5

4
3
5
×

b
w

av
e
s

2
4
.3

h
4
.9

M
6
2
.0

k
1
7
4

1
1
3
×

7
.3

M
2
.4

M
2
.0

k
5
4
.9

×
5
.2

M
2
4
9
k

1
.0

k
1
0
5
×

4
.3

M
9
7
3
k

1
.1

k
9
8
.5

×

b
zi

p
2

1
.3

h
2
4
2
k

3
.7

k
6
3
.0

1
0
3
×

3
8
3
k

4
7
5
k

7
1
1

3
1
.6

×
2
7
2
k

1
7
.0

k
3
7
3

5
9
.7

×
2
1
3
k

6
4
.0

k
4
1
4

5
8
.3

×

gc
c

0
.8

h
1
1
9
k

8
7
0

1
4
0

1
3
3
×

2
0
9
k

2
0
3
k

1
.5

k
1
8
.9

×
1
3
9
k

4
.5

k
7
5
9

3
8
.4

×
1
0
1
k

1
6
.0

k
7
8
6

3
6
.6

×

m
cf

1
2
.3

h
1
.0

M
1
.2

k
9
7
.0

1
.9

k
×

2
.3

M
5
7
8
k

1
.1

k
8
6
.0

×
1
.2

M
8
.6

k
5
1
8

7
9
8
×

7
0
2
k

3
0
.9

k
5
8
9

5
9
4
×

o
m

n
e
tp

p
1
0
.3

h
1
.1

M
3
3
.0

1
4
.0

1
8
.6

k
×

2
.2

M
5
2
.8

k
1
7
2

1
1
0
×

1
.2

M
3
5
8

8
5
.0

2
.5

k
×

8
5
6
k

1
.4

k
9
9
.0

1
.8

k
×

av
e
ra

ge
9
.2

h
1
.3

M
1
1
.4

k
9
5
.3

6
9
5
×

2
.3

M
6
3
4
k

1
.1

k
5
4
.9

×
1
.5

M
4
6
.9

k
5
4
0

2
5
0
×

1
.1

M
1
8
2
k

5
8
2

2
1
5
×

gl
o
b
al

av
e
ra

ge
1
.6

M
2
1
9

k
5
7
2

2
1
3
×

T
ab

le
1
:

P
e
rf

o
rm

an
ce

st
at

is
ti

cs
fo

r
1

0
0

ru
n
s

w
it

h
d

iff
e
re

n
t

st
ar

ti
n
g

ti
m

e
o

ff
se

ts
.

T
h
e

n
u
m

b
e
r

o
f

m
o

d
e
l

in
vo

ca
ti

o
n
s

fo
r

th
e

th
re

e
m

e
th

o
d

s

(W
:W

in
d

o
w

,
D

:D
yn

am
ic

-W
in

d
o

w
,
an

d
P

:P
h
as

e
)

is
sh

o
w

n
al

o
n
g

w
it

h
th

e
sp

e
e
d

u
p

fo
r

ru
n
n
in

g
th

e
p

h
as

e
-b

as
e
d

m
o

d
e
lv

s.
re

fe
re

n
ce

e
x
e
cu

ti
o

n
s

o
n

th
e

h
ar

d
w

ar
e
.

W
e

d
is

cu
ss

th
e

h
ig

h
lig

h
te

d
re

su
lt

s
in

th
e

te
x
t.

T
h
e

m
o

d
e
l-

b
as

e
d

ap
p

ro
ac

h
is

o
n

av
e
ra

ge
2

1
3

×
fa

st
e
r

th
an

h
ar

d
w

ar
e

e
x
e
cu

ti
o

n
.

123

application and then waiting for it to execute a predefined number of in-
structions before starting the target. We then restarted the interference
application if it terminated before the target.

In order to get an accurate representation of the performance, we ran
each experiment (target-interference pair) 100 times with random start
offsets for the target. We used the same starting time offsets for both the
hardware reference runs and for the modeled runs.

Experimental Setup

We ran the experiments on a 2.4GHz Intel Xeon E5620 system (West-
mere) with 4 cores and 3×2GBmemory distributed across 3DDR3 chan-
nels. Each core has a private 32 kB L1 data cache and a private 256 kB L2
cache. All four cores share a 12MB 16-way L3 cache with a pseudo-LRU
replacement policy.

The cache sharing model requires information about application
fetch rate, access rate and hit rate as a function of cache size and time.
We measured cache-size dependent data using cache pirating in 16 steps
of 768 kB (the equivalent of one way) up to 12MB, and used a sample
window size of 100 million instructions.

Benchmark Selection

In order to see how time-dependent phase behavior affects cache sharing
and performance, we selected benchmarks from SPEC CPU2006 with
interesting phase behavior. In addition to interesting phase behavior, we
also wanted to select applications that make significant use of the shared
L3 cache. For our evaluation, we selected four interference benchmarks
that represent four different phase behaviors: Single-Phase (omnetpp),
Dual-Phase (bwaves), Few-Phase (astar/lakes) and Multi-Phase (mcf).

Figure 3 shows the interference applications’ bandwidth usage (high
bandwidth indicates significant use of the shared L3 cache), and the de-
tected phases. In addition to the interference benchmarks, we selected
two more benchmarks, gcc/166 and bzip2/chicken, that we only use as
targets. These benchmarks have a lower average bandwidth usage than
the interference benchmarks, but they are still sensitive to cache conten-
tion. For the evaluation, we ran all combinations of the six applications
as targets vs. each of the four interference applications.

Performance: Speedup

Table 1 presents the performance of the three methods, Windows (W),
Dynamic-Windows (D) and Phase (P) per interference application. The

124

Model Invocations columns shows the number of times the cache shar-
ing model was invoked. For example, when astar co-executes with
bwaves (see the highlighted area), the cache model is invoked 1 400 000,
123 000, and 938 times for the window, the dynamic-window and the
phase-based method respectively.

The reference column (REF) shows the execution time to run each
target in isolation 100 times. For example, on our system, it takes 5.9
hours to run astar 100 times. The speedup column shows the speedup to
model 100 co-executed runs with the phase-based method compared to
running the target 100 times2. For example, it is 88.7× faster to model
100 co-executions of astar with bwaves than to run astar 100 times in
isolation.

Single-Phase: As expected, the speedup is greatest for omnetpp since
it consists of just one phase. The dynamic-window method can therefore
use a single large window for the whole execution. The phase-based
method can then easily reuse cache sharing results whenever the target
executes more instances of a phase. The geometric mean of the speedup
is 695×, the highest of the four interference benchmarks.

Dual-Phase: In a similar sense, we should expect a high speedup for
bwaves as well. However, bwaves executes much longer than the other
interference benchmarks. So, even though the phase-based method re-
duces the number of times the cache sharing model is used, it has a high
overhead from reading through all application profile data. On average
the speedup is only 54.9×.

Few-Phase and Multi-Phase: The three methods have roughly the
same performance for astar and mcf, and fall in between Single-Phase
and Dual-Phase in performance. On average the speedup is 250× and
215× for astar and mcf respectively.

It is clear from the table that the phase-based method provides the
best performance for all benchmarks, with an average speedup of 213×
for all interference benchmarks3. Next, we will evaluate the accuracy of
three methods to determine if there are any trade-offs associated with
the phase-based method.

Accuracy: Average Slowdown Error

Figure 4 presents the relative error when predicting the average slow-
down for the three methods. On average, the windows-based method

2The speedup excludes the time to collect the applications profiles with Cache
Pirating. That data is collected only once, and is then used in all the application mixes,
and hence not included.

3Note that the speedup numbers are based on our Python implementation. A C/C++
implementation would most likely result in greater speedups.

125

01234567

as
ta
r

bw
av

esbz
ip
2

gc
c

m
cf

om
ne

tp
p

ge
om

et
ri
cas

ta
r

bw
av

esbz
ip
2

gc
c

m
cf

om
ne

tp
p

ge
om

et
ri
cas

ta
r

bw
av

esbz
ip
2

gc
c

m
cf

om
ne

tp
p

ge
om

et
ri
cas

ta
r

bw
av

esbz
ip
2

gc
c

m
cf

om
ne

tp
p

ge
om

et
ri
cge

om
et

ri
c

SlowdownError[%]

W
in

d
o
w

D
yn

am
ic

W
in

d
o
w

P
h
as

e
P
re

vi
o
u
s

W
o
rk

M
u
lt
i-
P
h
as

e
(m

cf
)

Fe
w

-P
h
as

e
(a

st
ar

)
D

u
al

-P
h
as

e
(b

w
av

e
s)

S
in

gl
e
-P

h
as

e
(o

m
n
e
tp

p
)

F
ig

u
re

4
:

R
e
la

ti
ve

e
rr

o
r

in
p

re
d

ic
te

d
sl

o
w

d
o

w
n

fo
r

th
e

th
re

e
m

e
th

o
d

s
an

d
th

e
p

re
vi

o
u
s

p
h
as

e
-o

b
liv

io
u
s

ca
ch

e
sh

ar
in

g
m

o
d

e
l
[1

6
].

T
h
is

sh
ow

s

th
a
t

th
e

p
h
a
se

-b
a
se

d
m

et
h
od

(t
h
e

fa
st

es
t)

ca
n

b
e

u
se

d
w

it
h
ou

t
lo

w
er

in
g

th
e

a
cc

u
ra

cy
.

In
a
d
d
it
io

n
,

ig
n
or

in
g

a
p
p
lic

a
ti
on

s
p
h
a
se

b
eh

a
vi

or
w

ill
re

su
lt

in

n
ot

ic
ea

b
le

la
rg

er
p
re

d
ic

ti
on

er
ro

rs
(e

.g
.,

a
6
.3

%
er

ro
r

fo
r

th
e

p
h
a
se

-o
b
liv

ou
s

m
et

h
od

w
h
en

a
st

a
r

co
-e

xe
cu

te
s

w
it
h

b
w

a
ve

s)
.

126

has an error of 0.39% and a maximum error of 2.2% (bzip2 + omnetpp),
while the phase-based method has an average error of 0.41% and a max-
imum of 1.8% (omnetpp + bwaves). We can therefore safely use the
much faster phase-based method without sacrificing accuracy. In the rest
of this paper, we will therefore only look at the phase-based method.

In addition to the three methods, the figure also includes the er-
ror of using the previous phase-oblivious cache sharing model [16] that
does not take time-varying phase behavior into consideration. The phase
oblivious method has a reasonably good accuracy for omnetpp since it
only has one phase. However, the error is noticeably larger for appli-
cations with more phase behavior. For example, 6.3% when astar co-
executes with bwaves. This indicates that even when considering aver-
age slowdowns (i.e., ignoring variability), it is still important to consider
the time-varying behavior and how the two applications’ phases overlap.

On average, our phase-based method is 2.78× more accurate than
previous work, with an average error of 0.41% instead of 1.14% and a
3.5× lower maximum error of 1.8% instead of 6.3% (astar + bwaves).

Performance Variability

The average slowdown is a good metric for evaluating the overall accu-
racy of the different methods. However, it does not take performance
variation into consideration. We therefore use another more descrip-
tive metric, the cumulative slowdown distributions (CDF), to display the
performance variations. Figure 5 presents the CDF for the phase-based
method along with results from the reference hardware runs. The graphs
with white backgrounds highlight the benchmark pairs with interesting
performance variations.

The cumulative slowdown distributions can be interpreted as show-
ing the probability for a certain maximum slowdown. For example, in
Figure 5b, when astar is co-running together with bwaves, it has a 50%
probability of having a slowdown less than 6.5%. At the same time, there
is a 25% probability that the slowdown is larger than 15%.

Single-Phase. The CDF curves are mostly flat when omnetpp is used
as a interference application. For example, Figure 5e, where bwaves is co-
running with omnetpp, the curve is basically flat at 1% slowdown. This
means that there are no performance variations for bwaves co-running
with omnetpp, which is to be expected since omnetpp does not have
any time-varying behavior.

Dual-Phase. In contrast to omnetpp, bwaves has two phases with very
different behavior. The higher bandwidth usage in the second phase in-
dicate that it uses a larger part of the L3 cache, and will thus impose
a larger slowdown on the target application. The effect on the target

127

0

10

20

S
lo

w
d
o
w

n
[%

]

Single-Phase (omnetpp)

as
ta

r

Dual-Phase (bwaves)

0

10

20

S
lo

w
d
o
w

n
[%

]

b
w

av
e
s

0

10

20

S
lo

w
d
o
w

n
[%

]

b
zi

p
2

0

10

20

S
lo

w
d
o
w

n
[%

]

gc
c

0

10

20

S
lo

w
d
o
w

n
[%

]

m
cf

0

10

20

0 25 50 75 100

S
lo

w
d
o
w

n
[%

]

Runs

o
m

n
e
tp

p

0 25 50 75 100

Runs

T
a
rg

e
t

A
p

p
li
c
a
ti

o
n

s

Interference Applications

(a) (b)

(e) (f)

(i) (j)

(m) (n)

(q) (r)

(u) (v)

Phase Reference

Figure 5: Cumulative distributions of target-slowdowns for 100 runs of each pair of

applications with random start time offsets. The 100 application runs were sorted by

slowdown, with the largest slowdown on the right. A flat line indicates no performance

128

Few-Phase (astar)

0

10

20

S
lo

w
d
o
w

n
[%

]

Multi-Phase (mcf)

as
ta

r

0

10

20

S
lo

w
d
o
w

n
[%

]

b
w

av
e
s

b
w

av
e
s

0

10

20

S
lo

w
d
o
w

n
[%

]

b
zi

p
2

b
zi

p
2

0

10

20

S
lo

w
d
o
w

n
[%

]

gc
c

gc
c

0

10

20

S
lo

w
d
o
w

n
[%

]

m
cf

0 25 50 75 100

Runs

m
cf

0 25 50 75 100

0

10

20

S
lo

w
d
o
w

n
[%

]

Runs

o
m

n
e
tp

p

T
a
rg

e
t

A
p

p
li
c
a
ti

o
n

s

o
m

n
e
tp

p

Interference Applications

(c) (d)

(g) (h)

(k) (l)

(o) (p)

(t) (t)

(x) (y)

Phase Reference

variation across the 100 runs. In general, the performance will vary depending on how the

phases overlap.

129

applications will therefore depend on the starting offset. Since the two
phases have roughly the same length, we expect the target’s behavior to
depend on how it is aligned with the phase change. For example, short
targets (e.g., bzip2 in Figure 5j and gcc in Figure 5n), have a sharp turn in
the CDF because their execution is not likely to overlap with the phase
change. Longer targets (e.g., mcf in Figure 5r), have smoother distribu-
tion since they are more likely to overlap with the phase change, causing
the part of the application running before the phase change to have a
small slowdown, while the parts after the phase-change have a larger
slowdown. Since the position of the phase change relative to the target
application will change, the CDFs will tend to become smooth.

Few-Phase. There are both flat and curved CDFs for astar as interfer-
ence application. This is due to differences in the execution lengths (see
Figure 3). The CDF in Figure 5g (bwaves) is flat because astar is much
shorter than bwaves. Whenever the interference application terminates,
it is restarted. This means that astar will be restarted over and over until
bwaves terminates. The phase behavior will therefore appear homoge-
neous from a distance, and it results in a flat CDF. However, shorter
targets (e.g., gcc in Figure 5o) will overlap with different phases in astar.
We therefore see different target performance between runs and we find
a curved CDF.

Multi-Phase. The CDFs for mcf are similar in shape to astar’s for
mostly the same reasons. However, mcf has a slightly different phase
behavior. The same set of phases reappear several times in mcf (see Fig-
ure 3(d)). Since astar takes about half the time to execute, its execution
will overlap with several of mcf’s phases. Changing offsets in starting
time will therfore not change astars performance, since astar will just co-
execute with the same set of phases but with different instances of the
same phases. We therefore see a flatter curve for astar co-running with
mcf (Figure 5d) than with astar (Figure 5c).

Error: Performance Variability

The CDFs produced with the phase-based method have an overall good
accuracy, but do not always overlap completely with the reference curves.
There are two main sources of error: cache pirating data and bandwidth
limitations. We will discuss these two problems in the following sections.

Pirate Data

To measure cache-size dependent data, cache pirating co-executes a
cache intensive stress application that tries to steal parts of the cache.

130

This approach has two limitations: First, if the target is also cache in-
tensive, the pirate will have trouble keeping its working set in the cache.
Second, when stealing a large portion of the cache, the pirate will have
trouble reusing all of its the data before it is evicted.

Figure 5k shows the CDF for bzip2 when co-executing with astar.
The problem here is that bzip2 is cache intensive and only uses a small
part of the L3 cache compared to the others (see Figure 3(e)). This
makes it hard for Cache Pirating to steal the required cache space. As
a consequence, we incorrectly estimated some cache-size dependent ef-
fects, which leads to our overestimating the slowdown in the CDF.

One solution would be to instead use more cumbersome and expen-
sive methods to acquire the data. For example, page coloring [10] could
be used to limit the amount of cache the target application is allocated.

Bandwidth

The cache sharing model assumes that the system has infinite bandwidth.
This is obviously not the case, and as a result the model will underesti-
mate the slowdown whenever the targets need more bandwidth than
the system can provide. Figure 5 shows that we tend to underestimate
the slowdown of bwaves. The second phase in bwaves (see Figure 3(b))
consumes more bandwidth than the other applications. If this is a prob-
lem, we should expect that we will find the largest errors when modeling
bwaves, which is indeed the case.

One feature of the cache sharing model is that it can predict the
bandwidth an application mix requires to avoid being bandwidth limited.
Figure 6 shows the estimated cumulative bandwidth demand4 and the
measured cumulative bandwidth the applicationmix received during the
fastest (i.e., run 1 in Figure 5) and the slowest (i.e., run 100 in Figure 5)
runs. We interpret the figures as follows: x percent of the execution
has a bandwidth demand of more than y GB/s. For example, during the
slowest run with mcf (Figure 6r), 50% of mcf’s execution needs more
than 7.5GB/s to avoid slowing down due to bandwidth limitations.

The bandwidth demand is lowest for the fastest run since the target
applications is co-running with the first phase in bwaves. Here, the es-
timated bandwidth demand and the measured bandwidth usage closely
match each other. This means that the system can provide the required
bandwidth. But also, since we accurately estimate the slowdown, this
also implies that the method can accurately estimate the bandwidth de-
mand.

4The model produces bandwidth estimates using the input profile to estimate the
application’s bandwidth consumption for a given cache allocation.

131

0

5

10

15
B

an
d
w

id
th

[G
B

/s
]

0

5

10

15

B
an

d
w

id
th

[G
B

/s
]

0

5

10

15

0 25 50 75 100

B
an

d
w

id
th

[G
B

/s
]

Program Execution [%]

0 25 50 75 100

Program Execution [%]

(b) astar (f) bwaves

(j) bzip2 (n) gcc

(r) mcf (v) omnetpp

EstimatedFastest
EstimatedSlowest

MeasuredFastest
MeasuredSlowest

Figure 6: Predicted cumulative bandwidth demand (Estimated) and measured cumula-

tive bandwidth usage (Measured) for the fastest and the slowest run when co-executing

with bwaves.

132

0

10

20
S
lo

w
d
o
w

n
[%

]

0

10

20

S
lo

w
d
o
w

n
[%

]

0

10

20

0 25 50 75 100

S
lo

w
d
o
w

n
[%

]

Runs

0 25 50 75 100

Runs

(b) astar (f) bwaves

(j) bzip2 (n) gcc

(r) mcf (v) omnetpp

Phase
BW Corrected Model

Reference

Figure 7: Cumulative slowdown distributions for 100 runs (as in Figure 5) with the

bandwidth corrected model. This shows that the accuracy can be improved by combining a

bandwidth model with our cache sharing model to handle both cache sharing and bandwidth.

133

The slowest runs occur when the targets are co-running with the sec-
ond phase in bwaves. Here the bandwidth demand is much higher, and
sometimes the estimated bandwidth demand is higher than themeasured
bandwidth received. This means that the target is slowing down due to
bandwidth limitations. To see if we can correct the slowdown estima-
tions by taking this into consideration, we use the measured bandwidth
the application mix receives from the reference hardware runs. To do
this, we update the estimated number of executed cycles (𝑐𝑒𝑠𝑡) with the
following formula:

𝑐𝑛𝑒𝑤_𝑒𝑠𝑡 = 𝑐𝑒𝑠𝑡 + (𝐵𝑊𝑒𝑠𝑡 − 𝐵𝑊𝑚) ∗ 𝑐𝑒𝑠𝑡
𝐵𝑊𝑀𝐴𝑋

where 𝑐𝑛𝑒𝑤_𝑒𝑠𝑡 is the new estimate, 𝑐𝑒𝑠𝑡 is the old estimate, 𝐵𝑊𝑒𝑠𝑡
is the estimated bandwidth demand, 𝐵𝑊𝑚 is the measured bandwidth
received and finally, 𝐵𝑊𝑀𝐴𝑋 is the maximum bandwidth our system
can provide5. In other words, we extend the modeled execution time by
the number of additional cycles incurred by bandwidth limitations.

Figure 7 shows the result of estimating the slowdown with the band-
width corrected model. This correction reduces the slowdown error for
bwaves, mcf, and omnetpp. However, we still underestimate the slow-
down slightly for gcc, and now overestimate the slowdown for astar.

Unfortunately, such a bandwidth correction will not work in practice
since it uses oracle information (i.e., 𝐵𝑊𝑚), but it illustrates that a bet-
ter slowdown estimate can be obtained by combining the cache sharing
model with a bandwidth model to model both cache sharing and band-
width limitations. This is a promising direction for future work.

5 Case Study – Modeling Multi-Cores

In the previous section we investigated performance variations of appli-
cation pairs. However, modern processors have more than two cores. In
this section, we perform a small case study to demonstrate that our meth-
od can be used to model larger application mixes, and to model system
throughput.

Since all of the techniques we integrate in this method scale beyond
two cores, we demonstrate that our method can scale as well by estimat-
ing the system throughput when co-running a mix of four applications
on our four core reference system. To do this we compare the estimated
behavior (IPC and bandwidth) to that of the actual behavior for a mix

5We estimated the real-world bandwidth limit of our reference system to approxi-
mately 12GB/s using the STREAM benchmark [13].

134

0
0.5

1
1.5

2
2.5

gc
c

IP
C

0
0.5

1
1.5

2
2.5

b
zi

p
2

IP
C

0
0.5

1
1.5

2
2.5

as
ta

r
IP

C

0
0.5

1
1.5

2
2.5

b
w

av
e
s

IP
C

0

2

4

6

8

S
ys

te
m

IP
C

0
2
4
6
8

10
12

0 1 2 3 4 5 6 7 8 9 10

S
ys

te
m

B
W

[G
B

/s
]

Time [s]

Phase Reference

Figure 8: Predicted IPC (Phase) and measured IPC (Reference) for four co-running ap-

plications over time on a four-core system, as well as predicted and reference aggregate

throughput (IPC) and bandwidth.

of four applications. Figure 8 shows the IPC and system throughput
over time for the first ten seconds when co-running gcc, bzip2, astar and
bwaves. The figure shows that the estimated IPCs matches the reference
well.

The two main sources of error, pirate data and bandwidth, will be-
come more problematic when modeling larger application mixes. The
amount of cache available to each application is reduced when adding

135

more programs to the mix, which puts more pressure on the cache pi-
rate to collect data for smaller cache allocations.

The bandwidth limitation will also become more noticeable for two
reasons: First, more applications will contend for bandwidth, and thus
lower the amount available to each application. Second, when an appli-
cation receives less cache space, its bandwidth usage increases since it
misses more in L3 and that data needs to be fetch from memory again.

6 Related Work

Techniques to explore and understand multicore performance can gen-
erally be divided into three different categories; full system simulation,
partial simulation/modeling, and higher level modeling. The most ex-
pensive but also the most detail approach is full system simulation [1,
24, 25] where all cores and the entire memory system are simulated. A
faster, but less detailed, approach is to only simulate/model parts of the
system, and in particular the memory system. Such methods are either
trace driven [2–4, 27] or use high-level data [16, 29] similar to the data
we use. Finally, the least detailed approach simply aims to identify which
applications are sensitive to resource contention [11, 17, 28].

Simulation normally requires combinations of applications to be sim-
ulated together, which leads to poor scaling. Van Craeynest and Eeck-
hout [26] combine simulation and memory system modeling to reduce
the cost of simulating co-scheduled applications. Instead of simulating
how applications contend for shared resources, they simulate applica-
tions running in isolation and use the output from the simulator to drive
a cache sharing model. A major difference between our methods is that
they depend on a single high-fidelity simulation to generate the applica-
tion profiles used by their model, whereas we measure our input data
with a relatively low overhead on the target system. Also, accurately
simulating commodity hardware is often hard, or even impossible, since
manufacturers seldom release enough information to implement a cycle-
accurate simulator. Additionally, their evaluation focuses on the perfor-
mance variations of the underlying hardware due to different application
mixes, whereas we focus on the performance variations of the individual
applications.

Themethodmost similar to ours is the phase guided simulationmeth-
ods by Van Biesbrouck et al. [24, 25]. Similar to our phase-based meth-
od, they use phase information to reuse simulation results. However,
since their method relies on simulation they need to find and simulate
representative regions (i.e., sample windows) of co-running phases. We
do not have this problem since we can use the average behavior for the
entire phase in our profiles.

136

7 Conclusions

In this paper, we have presented an analytical method that predicts per-
formance variability due to the cache sharing effects imposed by other
co-running applications. The per-application profile data the method re-
quires can be captured cheaply and accurately during native execution on
real hardware for each application in isolation. Three alternative cache-
sharing methods with different performance properties were compared.
We showed that the fastest method provides excellent accuracy. We have
analyzed the performance variations caused by bandwidth sharing and
showed that even a simple bandwidth sharing model could explain most
of the deviations observed when the bandwidth contention is high. In
future work, we plan on extending our analytical method to include such
bandwidth-sharing effects.

Due to its speed, simple input data, and accuracy, this method can be
used to build efficient tools for software developers or system designers,
and is fast enough to be leveraged in scheduling and operating system
designs.

137

References

[1] Nathan L. Binkert, Ron G. Dreslinski, Lisa R. Hsu, Kevin T. Lim,
Ali G. Saidi, and Steven K. Reinhardt. “The M5 Simulator: Model-
ing Networked Systems”. In: IEEE Micro 26.4 (2006), pp. 52–60.
DOI: 10.1109/MM.2006.82.

[2] Dhruba Chandra, Fei Guo, Seongbeom Kim, and Yan Solihin.
“Predicting Inter-Thread Cache Contention on a Chip Multi-
Processor Architecture”. In: Proc. International Symposium on
High-Performance Computer Architecture (HPCA). 2005. DOI: 10.
1109/HPCA.2005.27.

[3] Xi E. Chen and TorM. Aamodt. “A First-Order Fine-GrainedMul-
tithreaded Throughput Model”. In: Proc. International Symposium
on High-Performance Computer Architecture (HPCA). 2009. DOI:
10.1109/HPCA.2009.4798270.

[4] Xi E. Chen and Tor M. Aamodt. “Modeling Cache Contention
and Throughput of Multiprogrammed Manycore Processors”. In:
IEEE Transactions on Computers PP.99 (2011). DOI: 10.1109/TC.
2011.141.

[5] Ashutosh S. Dhodapkar and James E. Smith. “Comparing Pro-
gram Phase Detection Techniques”. In: Proc. Annual Interna-
tional Symposium on Microarchitecture (MICRO). Washington,
DC, USA: IEEE Computer Society, 2003. DOI: 10.1109/MICRO.
2003.1253197.

[6] RichardO. Duda, Peter E. Hart, andDavid G. Stork. “Pattern Clas-
sification”. In: 2nd ed.Wiley-Interscience, 2001. Chap. 10.11. On-
line Clustering, pp. 559–565.

[7] David Eklov, Nikos Nikoleris, David Black-Schaffer, and Erik
Hagersten. “Cache Pirating: Measuring the Curse of the Shared
Cache”. In: Proc. International Conference on Parallel Processing
(ICPP). 2011, pp. 165–175. DOI: 10.1109/ICPP.2011.15.

[8] Aamer Jaleel, William Hasenplaugh, Moinuddin Qureshi, Julien
Sebot, Jr Simon Steely, and Joel Emer. “Adaptive Insertion Policies
for Managing Shared Caches”. In: Proc. International Conference on
Parallel Architectures and Compilation Techniques (PACT). 2008,
pp. 208–219. DOI: 10.1145/1454115.1454145.

[9] J. Lau, S. Schoemackers, and B. Calder. “Structures for Phase Clas-
sification”. In: Proc. International Symposium on Performance Anal-
ysis of Systems & Software (ISPASS). 2004, pp. 57–67. DOI: 10.
1109/ISPASS.2004.1291356.

138

http://dx.doi.org/10.1109/MM.2006.82
http://dx.doi.org/10.1109/HPCA.2005.27
http://dx.doi.org/10.1109/HPCA.2005.27
http://dx.doi.org/10.1109/HPCA.2009.4798270
http://dx.doi.org/10.1109/TC.2011.141
http://dx.doi.org/10.1109/TC.2011.141
http://dx.doi.org/10.1109/MICRO.2003.1253197
http://dx.doi.org/10.1109/MICRO.2003.1253197
http://dx.doi.org/10.1109/ICPP.2011.15
http://dx.doi.org/10.1145/1454115.1454145
http://dx.doi.org/10.1109/ISPASS.2004.1291356
http://dx.doi.org/10.1109/ISPASS.2004.1291356

[10] Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong
Zhang, and P. Sadayappan. “Gaining Insights into Multicore
Cache Partitioning: Bridging the Gap Between Simulation
and Real Systems”. In: Proc. International Symposium on High-
Performance Computer Architecture (HPCA). 2008, pp. 367–378.
DOI: 10.1109/HPCA.2008.4658653.

[11] Jason Mars, Lingjia Tang, and Mary Lou Soffa. “Directly Char-
acterizing Cross Core Interference Through Contention Synthe-
sis”. In: Proc. International Conference on High Performance and
Embedded Architecture and Compilation (HiPEAC). 2011. DOI:
10.1145/1944862.1944887.

[12] Jason Mars, Neil Vachharajani, Robert Hundt, and Mary Lou
Soffa. “Contention Aware Execution”. In: Proc. International Sym-
posium on Code Generation and Optimization (CGO). 2010. DOI:
10.1145/1772954.1772991.

[13] John D. McCalpin. STREAM: Sustainable Memory Bandwidth in
High Performance Computers. Technical Report. University of Vir-
ginia, 1991–2007. URL: http : / / www . cs . virginia . edu /
stream/.

[14] Nitzan Peleg and Bilha Mendelson. “Detecting Change in Pro-
gram Behavior for Adaptive Optimization”. In: Proc. International
Conference on Parallel Architectures and Compilation Techniques
(PACT). IEEE Computer Society, 2007, pp. 150–162. DOI: 10.
1109/PACT.2007.25.

[15] Moinuddin K. Qureshi and Yale N. Patt. “Utility-Based Cache Par-
titioning: A Low-Overhead, High-Performance, Runtime Mecha-
nism to Partition Shared Caches”. In: Proc. Annual International
Symposium on Microarchitecture (MICRO). 2006, pp. 423–432.
DOI: 10.1109/MICRO.2006.49.

[16] Andreas Sandberg, David Black-Schaffer, and Erik Hagersten. “Ef-
ficient Techniques for Predicting Cache Sharing and Throughput”.
In: Proc. International Conference on Parallel Architectures and Com-
pilation Techniques (PACT). 2012, pp. 305–314. DOI: 10.1145/
2370816.2370861.

[17] Andreas Sandberg, David Eklöv, and Erik Hagersten. “Reduc-
ing Cache Pollution Through Detection and Elimination of Non-
Temporal Memory Accesses”. In: Proc. High Performance Comput-
ing, Networking, Storage and Analysis (SC). 2010. DOI: 10.1109/
SC.2010.44.

139

http://dx.doi.org/10.1109/HPCA.2008.4658653
http://dx.doi.org/10.1145/1944862.1944887
http://dx.doi.org/10.1145/1772954.1772991
http://www.cs.virginia.edu/stream/
http://www.cs.virginia.edu/stream/
http://dx.doi.org/10.1109/PACT.2007.25
http://dx.doi.org/10.1109/PACT.2007.25
http://dx.doi.org/10.1109/MICRO.2006.49
http://dx.doi.org/10.1145/2370816.2370861
http://dx.doi.org/10.1145/2370816.2370861
http://dx.doi.org/10.1109/SC.2010.44
http://dx.doi.org/10.1109/SC.2010.44

[18] Andreas Sembrant, David Black-Schaffer, and Erik Hagersten.
“Phase Behavior in Serial and Parallel Applications”. In: Proc. Inter-
national Symposium on Workload Characterization (IISWC). 2012,
pp. 47–58. DOI: 10.1109/IISWC.2012.6402900.

[19] Andreas Sembrant, David Eklov, and Erik Hagersten. “Efficient
Software-based Online Phase Classification”. In: Proc. Interna-
tional Symposium on Workload Characterization (IISWC). 2011,
pp. 104–115. DOI: 10.1109/IISWC.2011.6114207.

[20] T. Sherwood, S. Sair, and B. Calder. “Phase Tracking and Predic-
tion”. In: Proc. International Symposium on Computer Architecture
(ISCA). 2003, pp. 336–347. DOI: 10.1109/ISCA.2003.1207012.

[21] Timothy Sherwood, Erez Perelman, and Brad Calder. “Basic Block
Distribution Analysis to Find Periodic Behavior and Simulation
Points in Applications”. In: Proc. International Conference on Paral-
lel Architectures and Compilation Techniques (PACT). 2001, pp. 3–
14. DOI: 10.1109/PACT.2001.953283.

[22] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad
Calder. “Automatically Characterizing Large Scale Program Be-
havior”. In: Proc. Internationla Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS).
2002, pp. 45–57. DOI: 10.1145/605397.605403.

[23] David Tam, Reza Azimi, Livio Soares, and Michael Stumm. “Man-
aging Shared L2 Caches on Multicore Systems in Software”. In:
Proc. Workshop on the Interaction between Operating Systems and
Computer Architecture (WIOSCA). 2007.

[24] Michael Van Biesbrouck, Lieven Eeckhout, and Brad Calder.
“Considering All Starting Points for Simultaneous Multithread-
ing Simulation”. In: Proc. International Symposium on Performance
Analysis of Systems & Software (ISPASS). 2006, pp. 143–153. DOI:
10.1109/ISPASS.2006.1620799.

[25] Michael Van Biesbrouck, Timothy Sherwood, and Brad Calder. “A
Co-Phase Matrix to Guide Simultaneous Multithreading Simula-
tion”. In: Proc. International Symposium on Performance Analysis of
Systems & Software (ISPASS). 2004, pp. 45–56. DOI: 10.1109/
ISPASS.2004.1291355.

[26] Kenzo Van Craeynest and Lieven Eeckhout. “The Multi-Program
Performance Model: Debunking Current Practice in Multi-Core
Simulation”. In: Proc. International Symposium on Workload Char-
acterization (IISWC). 2011, pp. 26–37. DOI: 10 . 1109 / IISWC .
2011.6114194.

140

http://dx.doi.org/10.1109/IISWC.2012.6402900
http://dx.doi.org/10.1109/IISWC.2011.6114207
http://dx.doi.org/10.1109/ISCA.2003.1207012
http://dx.doi.org/10.1109/PACT.2001.953283
http://dx.doi.org/10.1145/605397.605403
http://dx.doi.org/10.1109/ISPASS.2006.1620799
http://dx.doi.org/10.1109/ISPASS.2004.1291355
http://dx.doi.org/10.1109/ISPASS.2004.1291355
http://dx.doi.org/10.1109/IISWC.2011.6114194
http://dx.doi.org/10.1109/IISWC.2011.6114194

[27] Xiaoya Xiang, Bin Bao, Tongxin Bai, Chen Ding, and Trishul
Chilimbi. “All-Window Profiling and Composable Models of
Cache Sharing”. In: Proc. Symposium on Principles and Practice of
Parallel Programming (PPoPP). 2011. DOI: 10 . 1145 / 1941553 .
1941567.

[28] Yuejian Xie and Gabriel H Loh. “Dynamic Classification of Pro-
gram Memory Behaviors in CMPs”. In: Proc. Workshop on Chip
Multiprocessor Memory Systems and Interconnects (CMP-MSI).
2008.

[29] Chi Xu, Xi Chen, Robert P. Dick, and Zhuoqing Morley Mao.
“Cache Contention and Application Performance Prediction for
Multi-Core Systems”. In: Proc. International Symposium on Perfor-
mance Analysis of Systems & Software (ISPASS). 2010. DOI: 10.
1109/ISPASS.2010.5452065.

[30] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova.
“Addressing Shared Resource Contention in Multicore Processors
via Scheduling”. In: Proc. Internationla Conference on Architectural
Support for Programming Languages and Operating Systems (ASP-
LOS). 2010. DOI: 10.1145/1736020.1736036.

141

http://dx.doi.org/10.1145/1941553.1941567
http://dx.doi.org/10.1145/1941553.1941567
http://dx.doi.org/10.1109/ISPASS.2010.5452065
http://dx.doi.org/10.1109/ISPASS.2010.5452065
http://dx.doi.org/10.1145/1736020.1736036

PAPER IV

Full Speed Ahead:

Detailed Architectural Simulation

at Near-Native Speed

Andreas Sandberg

Erik Hagersten

David Black-Schaffer

Technical report 2014-005. Dept. of Information Technology, Uppsala University, March 2014.

URI: urn:nbn:se:uu:diva-220649

http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-220649

Abstract— Popular microarchitecture simulators are typically several
orders of magnitude slower than the systems they simulate. This leads to
two problems: First, due to the slow simulation rate, simulation studies
are usually limited to the first few billion instructions, which corresponds
to less than 10% the execution time of many standard benchmarks. Since
such studies only cover a small fraction of the applications, they run the
risk of reporting unrepresentative application behavior unless sampling
strategies are employed. Second, the high overhead of traditional sim-
ulators make them unsuitable for hardware/software co-design studies
where rapid turn-around is required.

In spite of previous efforts to parallelize simulators, most commonly
used full-system simulations remain single threaded. In this paper, we
explore a simple and effective way to parallelize sampling full-system
simulators. In order to simulate at high speed, we need to be able to
efficiently fast-forward between sample points. We demonstrate how
hardware virtualization can be used to implement highly efficient fast-
forwarding in the standard gem5 simulator and how this enables efficient
execution between sample points. This extremely rapid fast-forwarding
enables us to reach new sample points much quicker than a single sam-
ple can be simulated. Together with efficient copying of simulator state,
this enables parallel execution of sample simulation. These techniques
allow us to implement a highly scalable sampling simulator that exploits
sample-level parallelism.

We demonstrate how virtualization can be used to fast-forward sim-
ulators at 90% of native execution speed on average. Using virtualized
fast-forwarding, we demonstrate a parallel sampling simulator that can
be used to accurately estimate the IPC of standard workloads with an av-
erage error of 2.2% while still reaching an execution rate of 2.0GIPS
(63% of native) on average. We demonstrate that our parallelization
strategy scales almost linearly and simulates one core at up to 93% of
its native execution rate, 19 000x faster than detailed simulation, while
using 8 cores.

1 Introduction

Simulation is commonly used to evaluate new proposals in computer
architecture and to understand complex hardware/software interactions.
However, traditional simulation is very slow. While the performance
of computer systems have steadily increased, simulators have become
increasingly complex, and their performance relative to the simulated
systems has decreased. A typical full-system simulator for a single out-
of-order (OoO) processor executes around 0.1 million instructions per

144

1 hour

1 day

1 week
1 month

1 year

400.perlbench

401.bzip2

416.gam
ess

433.m
ilc

453.povray

456.hm
m
er

458.sjeng

462.libquantum

464.h264ref

471.om
netpp

481.w
rf

482.sphinx3

483.xalancbm
k

Native Sim. pFSA Sim. Fast Sim. Detailed

Figure 1: Native, our parallel sampler (pFSA), and projected execution times using

gem5’s functional and detailed out-of-order CPUs for a selection of SPEC CPU2006

benchmarks.

second (MIPS) on a modern processor that peaks at several billion in-
structions per second per core. Even fast, simplified, simulation modes
typically execute at only 1–10MIPS. The slow simulation rate is a se-
vere limitation when evaluating new high-performance computer archi-
tectures or researching hardware/software interactions. There is there-
fore a need for efficient sampling simulators that are able to fast-forward
simulation at near-native speed.

Many common benchmarks take an exorbitant amount of time
to simulate in detail to completion. This is illustrated by Figure 1
which compares execution times of native execution, our parallel sam-
pling method (pFSA), and project simulation times using the popular
gem5 [3] full-system simulator. The low simulation speed has several
undesirable consequences: 1) In order to simulate interesting parts of a
benchmark, researchers often fast-forward to a point of interest (POI).
In this case, fast forwarding to a new a simulation point close to the end
of a benchmark takes between a week and a month, which makes this ap-
proach painful or even impractical. 2) Since fast-forwarding is relatively
slow and a sampling simulator can never execute faster than the fastest
simulation mode, it is often impractical to get good full-application per-
formance estimates using sampling techniques. 3) Interactive use is slow
and painful. For example, setting up and debugging a new experiment
would be much easier if the simulator could execute at more human-
usable speeds.

Many researchers have worked on improving simulator performance.
One popular strategy has been to sample execution. The SMARTS [22]
methodology uses periodic sampling, wherein the simulator runs in a fast

145

mode most of the time and switches to a detailed simulation mode to
measure performance. A similar idea, SimPoint [17], uses stored check-
points of multiple samples that represent the dominant parts of an appli-
cation.

In this work, we propose a simple but effective parallel sampling
methodology that uses hardware virtualization to fast-forward between
samples at near-native speed and parallelization to overlap detailed sim-
ulation and fast-forwarding. We demonstrate an implementation of our
sampling methodology for the popular gem5 full-system simulation envi-
ronment. However, the methodology itself is general and can be applied
to other simulation environments. In our experiments, we show that our
implementation scales almost linearly to close to native speed of execu-
tion resulting in a peak performance in excess of 4GIPS.

To accomplish this, we extend gem5 with a new CPU module that
uses the hardware virtualization support available in current ARM- and
x86-based hardware to execute directly on the physical host CPU. Our
virtual CPU module uses standard Linux interfaces, such as the Linux
Kernel-based Virtual Machine [7] (KVM) that exposes hardware virtu-
alization to user space. This virtual CPU module is similar to that of
PTLsim [23], but differs on two crucial points, both of which stem from
PTLsim’s use of the Xen para-virtualization environment. Since PTLsim
depends on Xen, it presents a para-virtualized environment to the simu-
lated system. This means that the simulated system needs to be aware of
the Xen environment to function correctly and it does not simulate many
important low-level hardware components, such as interrupt timers or
IO devices. In addition, the use of Xen makes it difficult to use PTLsim
in a shared environments (e.g., a shared cluster), which is not the case
for our KVM-based implementation. Since KVM is provided as a stan-
dard component in Linux, we have successfully used our CPU module
on shared clusters without modifying the host’s operating system.

Having support for virtualization in gem5 enables us to implement
extremely efficient Virtual Fast-Forwarding (VFF), which executes in-
structions at close to native speed. By itself, VFF overcomes some of
the limitations of traditional simulation environments. Using VFF, we
can quickly execute to a POI anywhere in a large application and then
switch to a different CPUmodule for detailed simulation, or take a check-
point for later use. Due to the its speed, it is feasible to work interactively
with the simulator while debugging and setting up the simulation envi-
ronment.

VFF enables us to rapidly fast-forward the simulator at near-native
speed. We use this capability to implement a highly efficient sampling
simulator. We demonstrate how this simulator can be parallelized using

146

standard operating system techniques, which enables us to overlap sam-
ple simulation with fast-forwarding. We call this parallel simulator pFSA
for Parallel Full Speed Ahead. Similar parallelization techniques [12, 19]
have previously been applied to the Pin [8] dynamic instrumentation en-
gine in order to hide instrumentation costs. However, unlike Pin-based
approaches, we are not limited to user-space profiling.

Our contributions are:

• We present a new virtual CPU module in gem5 which uses stan-
dard Linux interfaces and executes code at near-native speed. We
are actively working on contributing this to the rest of the gem5
community.

• We demonstrate how hardware virtualization can be used to im-
plement fast and accurate simulation sampling (2.0% IPC error on
average).

• We present a simple strategy to parallelize sampling simulators
which results in almost linear speedup to close to native speed (63%
of native execution, 2.0GIPS on average) for a selection of SPEC
CPU2006 benchmarks.

• We present a method that estimates the accuracy loss due to cache
warming inaccuracies, and demonstrate how it can be integrated
into the sampling framework with low overhead (adding 3.9% over-
head on average).

2 Overview of FSA Sampling

Until now, detailed simulation has been painfully slow. To make simula-
tors usable for larger applications, many researchers [4, 17, 20–22] have
proposed methods to sample the simulation. With sampling, the simu-
lator can run in a faster, less detailed mode between samples, and only
spend time on slower detailed simulation for the individual samples. De-
sign parameters such as sampling frequency, cache warming strategy, and
fast forwarding method give the user the ability to control the trade-off
between performance and accuracy to meet his or her needs.

SMARTS [22] is a well-known sampling methodology which uses
three different modes of execution to balance accuracy and simulation
overhead. The first mode, functional warming, is the fastest mode and ex-
ecutes instructions without simulating timing, but still simulates caches
and branch predictors to maintain long-lasting microarchitectural state.
This mode moves the simulator from one sample point to another and

147

Functional Warming Detailed Simulation
Detailed Warming

Sampling Interval

Time

(a) SMARTS Sampling

Time

Detailed Simulation (OoO CPU)
Detailed Warming (OoO CPU)
Functional Warming (Atomic CPU)
Virtualized Fast-Forwarding

Sampling Interval

(b) FSA Sampling

Time

Core 4

Core 3

Core 2

Core 1

(c) pFSA Sampling

Figure 2: Comparison of how different sampling strategies interleave different simula-

tion modes.

executes the bulk of the instructions. The second mode, detailed warm-
ing, simulates the entire system in detail using an OoO CPU model and
warms the CPU’s internal structures (e.g., load and store buffers). The
third mode, detailed sampling, simulates the system in detail and takes
the desired measurements. The interleaving of these sampling modes is
shown in Figure 2(a).

SMARTS uses a technique known as always-on cache and branch pre-
dictor warming, which guarantees that these resources are warm when
a sample is taken. This makes it trivial to ensure that the long-lived mi-
croarchitectural state (e.g., caches and branch predictors) is warm. How-
ever, the overhead of always-on cache warming, which effectively pre-
vents efficient native execution, is significant. We trade-off the guar-
antees provided by always-on cache and branch predictor warming for
dramatic performance improvements (in the order of 1000x) and dem-
onstrate a technique that can be used to detect and estimate warming
errors.

In traditional SMARTS-like sampling, the vast majority of the simu-
lation time is spent in the functional warming mode [20, 22] as it exe-
cutes the vast majority of the instructions. To reduce the overhead of
this mode, we use VFF to execute instructions at near-native speed on

148

the host CPU when the simulator is executing between samples. How-
ever, we cannot directly replace the functional warming mode with na-
tive execution using VFF, as VFF can not warm the simulated caches
and branch predictors. Instead, we add it as a new execution mode, vir-
tualized fast-forward, which uses VFF to execute between samples. Af-
ter executing to the next sample at near-native speed in the virtualized
fast-forward mode, we switch to the functional warming mode, which
now only needs to run long enough to warm caches and branch predic-
tors. This allows us to execute the vast majority of our instructions at
near native speed through hardware virtualization (Figure 2(b)). We call
this sampling approach Full Speed Ahead (FSA) sampling. With this ap-
proach, the majority of the instructions (typically more than 95%) now
execute in the (enormously faster) virtualized fast-forward mode instead
of the simulated functional warming mode.

Despite executing the majority of the instructions natively, FSA still
spends the majority of its time in the non-virtualized simulation modes
(typically 75%–95%) to warm and measure sample points. To parallelize
this sample simulation we need to do two things: copy the simulator
state for each sample point (to allow them to execute independently),
and advance the simulator to the next simulation point before the previ-
ous ones have finished simulating (to generate parallel work). We imple-
ment such a parallel simulator by continuously running the simulator in
the virtualized fast-forward mode, and cloning the simulator state when
we want to take a sample. We then do a detailed simulation of the cloned
sample in parallel with the continued fast-forwarding of the original exe-
cution. If we can copy the system state with a sufficiently low overhead,
the simulator will scale well, and can reach near-native speeds. We call
this simulation mode Parallel Full Speed Ahead (pFSA) sampling. pFSA
has the same execution modes as FSA, but unlike FSA the functional
and detailed modes execute in parallel with the virtualized fast-forward
mode (Figure 2(c)).

Since FSA and pFSA use limited warming of caches and branch pre-
dictors, there is a risk of insufficient warming which can lead to incorrect
simulation results. To detect and estimate the impact of limited warming,
we devise a simulation strategy that allows us to run the detailed simula-
tion for both the optimistic (sufficient warming) and pessimistic (insuf-
ficient warming) cases. We use our efficient state copying mechanism
to quickly re-run detailed warming and simulation without re-running
functional warming. This results in a very small overhead since the simu-
lator typically spends less than 10% of its execution time in the detailed
modes. The difference between the pessimistic and optimistic cases gives
us insight into the impact of functional warming.

149

3 Background

gem5: Full-System Discrete Event Simulation

Full-system simulators are important tools in computer architecture re-
search as they allow architects to model the performance impact of new
features on the whole computer system including the operating system.
To accurately simulate the behavior of a system, they must simulate all
important components in the system, including CPUs, the memory sys-
tem, and the I/O and the storage. In most simulators the components are
designed as modules, enabling users to plug in new components relatively
easily.

Simulators based on discrete event simulation handle time by main-
taining a queue of events that happen at specific times. Each event is
associated with an event handler that is executed when the event is trig-
gered. For example, an event handler might simulate one clock cycle in a
CPU. New events are normally only scheduled (inserted into the queue)
by event handlers. The main loop in a discrete event simulator takes the
first event from the queue and executes its event handler. It continues
to do so until it encounters an exit event or the queue is empty. As a
consequence of executing discrete events from a queue, the time in the
simulated system progresses in discrete steps of varying length, depend-
ing on the time between events in the queue.

gem5 [3] is a discrete event full-system simulator, which provides
modules for most components in a modern system. The standard gem5
distribution includes several CPUmodules, notably a detailed superscalar
OoO CPU module and a simplified faster functional CPU module that can
be used to increase simulation speed at a loss of detail. The simulated
CPU modules support common instruction sets such as ARM, SPARC,
and x86. Due to the design of the simulator, all of the instruction sets use
the same pipeline models. In addition, gem5 includes memory system
modules (GEMS [10] or simplified MOESI), as well a DRAM module,
and support for common peripherals such as disk controllers, network
interfaces, and frame buffers.

In this paper, we extend gem5 to add support for hardware virtu-
alization through a new virtual CPU module and leverage the speed of
this new module to add support for parallel sampling. The virtual CPU
module can be used as a drop-in replacement for other CPU modules in
gem5, thereby enabling rapid execution. Since the module supports the
same gem5 interfaces as simulated gem5 CPU modules, it can be used
for checkpointing and CPU module switching during simulation.

150

Hardware Virtualization

Virtualization solutions have traditionally been employed to run multi-
ple operating system instances on the same hardware. A layer of software,
a virtual machine monitor or VMM, is used to protect the different oper-
ating systems from each other and provide a virtual view of the system.
The VMM protects the virtual machines from each other by intercept-
ing instructions that are potentially dangerous, such as IO or privileged
instructions. Dangerous instructions are then simulated to give the soft-
ware running in the virtual machine the illusion of running in isolation
on a real machine1. Early x86 virtualization solutions (e.g., VMware)
used binary rewriting of privileged code to intercept dangerous instruc-
tions and complex logic to handle the mapping between addresses in the
guest and host system. As virtualization gained popularity, manufactur-
ers started adding hardware virtualization extensions to their processors.
These extensions allow the VMM to intercept dangerous instructions
without binary rewriting and provide support for multiple layers of ad-
dress translation (directly translating from guest virtual addresses to host
physical addresses). Since these extensions allow most of the code in a
virtual machine to execute natively, many workloads execute at native
speed.

The goals of virtualization software and traditional computer archi-
tecture simulators are very different. One of the major differences is
how device models (e.g, disk controllers) are implemented. Traditional
virtualization solutions typically prioritize performance, while architec-
ture simulators focus on accurate timing and detailed hardware statis-
tics. Timing sensitive components in virtual machines typically follow
the real-time clock in the host, which means that they follow wall-clock
time rather than a simulated time base. Integrating support for hard-
ware virtualization into a simulator such as gem5 requires us to ensure
that the virtual machine and the simulator have a consistent view of de-
vices, time, memory, and CPU state. We describe these implementation
details in Section 4.

4 Implementation

In order to implement a fast sampling simulator, we need to support ex-
tremely fast fast-forwarding as most instructions will be executed in the
fast-forward mode. We implement rapid fast-forwarding using hardware

1This is not strictly true, the virtualization software usually exposes virtual devices
that provide more efficient interfaces than simulated hardware devices.

151

virtualization which executes code natively. To further improve the per-
formance of the simulator, we overlap fast-forwarding and sample sim-
ulation by executing them in parallel. This requires efficient cloning of
the simulator’s internal state, which we implement using copy-on-write
techniques. While our implementation is gem5-specific, we believe that
the techniques used are portable to other simulation environment.

Hardware Virtualization in gem5

Our goal is to accelerate simulation by off-loading some instructions ex-
ecuted in the simulated system to the hardware CPU. This is accom-
plished by our virtual CPU module using hardware virtualization exten-
sions to execute code natively at near-native speed. We designed the
virtual CPU module to allow it to work as a drop-in replacement for the
other CPU modules in gem5 (e.g., the OoO CPU module) and to only
require standard features in Linux. This means that it supports gem5
features like CPU module switching during simulation and runs on off-
the-shelf Linux distributions.

Integrating hardware virtualization in a discrete event simulator re-
quires that we ensure consistent handling of 1) simulated devices, 2) time,
3) memory, and 4) processor state. First, simulators and traditional vir-
tualization environments both need to provide a device model to make
software believe it is running on a real system. We interface the virtual
CPU with gem5’s device models (e.g., disk controllers, displays, etc.),
which allows the virtual CPU to use the same devices as the simulated
CPUs. Second, discrete event simulators and traditional virtualization
environments handle time in fundamentally different ways. For exam-
ple, a virtualization environment uses real, wall-clock, time to sched-
ule timer interrupts, whereas a discrete event simulator uses a simulated
time base. Interfacing the two requires careful management of the time
spent executing in the virtual CPU. Third, full-system simulators and
virtualization have different memory system requirements. Most simula-
tors assume that processor modules access memory through a simulated
memory system, while the virtual CPU requires direct access to mem-
ory. In order to execute correctly, we need to make sure that simulated
CPUs and virtual CPUs have a consistent view of memory. Fourth, the
state of a simulated CPU is not directly compatible with the real hard-
ware, which makes it hard to transfer state between a virtual CPU and a
simulated CPU. These issues are discussed in detail below:

Consistent Devices: The virtualization layer does not provide any
device models. A CPU normally communicates with devices through
memory mapped IO and devices request service from the CPU through

152

interrupts. Memory accesses to IO devices (and IO instructions such as
in and out) are intercepted by the virtualization layer, which stops the
virtual CPU and hands over control to gem5. In gem5, we synthesize
a memory access that is inserted into the simulated memory system, al-
lowing the access to be seen and handled by gem5’s device models. IO
instructions are treated like normalmemory-mapped device accesses, but
are mapped to a special address range in gem5’s simulated memory sys-
tem. When the CPU model sees an interrupt from a device, it injects it
into the virtual CPU using KVM’s interrupt interface.

Consistent Time: Simulating time is difficult because device models
(e.g., timers) execute in simulated time, while the virtual CPU executes
in real time. A traditional virtualization environment solves this issue
by running device models in real time as well. For example, if a timer
is configured to raise an interrupt every second, it would setup a timer
on the host system that fires every second and injects an interrupt into
the virtual CPU. In a simulator, the timer model inserts an event in the
event queue one second into the future. The simulator then executes
instructions, cycle by cycle, until it reaches the timer event. At this point,
the timer model raises an interrupt in the CPU. To make device models
work reliably, we need to bridge this gap between simulated time and
the time as perceived by the virtual CPU.

We address the difference in timing requirements between the virtual
CPU and the gem5 device models by restricting the amount of time the
virtual CPU is allowed to execute between simulator events. When the
virtual CPU is started, it is allowed to execute until a simulated device
requires service (e.g., raises an interrupt or starts a delayed IO transfer).
This is accomplished by looking into the event queue before handing
over control to the virtual CPU. If there are events scheduled, we use
the time until the next event to determine how long the virtual CPU
should execute before handling the event. Knowing this, we schedule a
timer that interrupts the virtual CPU at the correct time to return control
to the simulator, which handles the event.

Due to the different execution rates between the simulated CPU and
the host CPU (e.g., a server simulating an embedded system), we need
to scale the host time to make asynchronous events, such as interrupts,
happen with the right frequency relative to the executed instructions.
For example, when simulating a CPU that is slower than the host CPU,
we scale time with a factor that is less than one (i.e., we make device
time faster relative to the CPU). This makes the host CPU seem slower
as timer interrupts happen more frequently relative to the instruction
stream. Our current implementation uses a constant conversion factor,
but future implementations could determine this value automatically us-
ing sampled timing-data from the OoO CPU module.

153

Consistent Memory: Interfacing between the simulated memory sys-
tem and the virtualization layer is necessary to transfer state between the
virtual CPU module and the simulated CPU modules. First, the virtual
machine needs to know where physical memory is located in the simu-
lated system and where it is allocated in the simulator. Since gem5 stores
the simulated system’s memory as contiguous blocks of physical mem-
ory, we can look at the simulator’s internal mappings and install the same
mappings in the virtual system. This gives the virtual machine and the
simulated CPUs the same view of memory. Second, since virtual CPUs
do not use the simulated memory system, we need to make sure that
simulated caches are disabled when switching to the virtual CPU mod-
ule. This means that we need to write back and invalidate all simulated
caches when switching to the virtual CPU. Third, accesses to memory-
mapped IO devices need to be simulated. Since IO accesses are trapped
by the virtualization layer, we can translate them into simulated accesses
that are inserted into the simulated system to access gem5’s simulated
devices.

Consistent State: Converting between the processor state representa-
tion used by the simulator and the virtualization layer, requires detailed
understanding of the simulator internals. There are several reasons why a
simulator might be storing processor state in a different way than the ac-
tual hardware. For example, in gem5, the x86 flag register is split across
several internal registers to allow more efficient dependency tracking in
the OoO pipeline model. Another example are the registers in the x87
FPU: the real x87 stores 80-bit floating point values in its registers, while
the simulated x87 only stores 64-bit values. Similar difficulties exist in
the other direction. For example, only one of the two interfaces used to
synchronize FPU state with the kernel updates the SIMD control regis-
ter correctly. We have implemented state conversion to give gem5 access
to the processor state using the same APIs as the simulated CPU mod-
ules. This enables online switching between virtual and simulated CPU
modules as well as simulator checkpointing and restarting.

Since our virtual CPU module integrates seamlessly with the rest of
gem5, we can use it transfer state to and from other simulated CPU
modules. This allows the virtual CPU module to be used as a plug-in re-
placement for the existing CPU modules whenever simulation accuracy
can be traded off for execution speed. For example, it can be used to
implement efficient performance sampling by fast-forwarding to points
of interest far into an application, or interactive debugging during the
setup phase of an experiment.

154

Cloning Simulation State in gem5

Exposing the parallelism available in a sampling simulator requires us to
be able to overlap the detailed simulation of multiple samples. When tak-
ing a new sample, the simulator needs to be able to start a new worker
task (process or thread) that executes the detailed simulation using a
copy of the simulator state at the time the sample was taken. Copying
the state to the worker can be challenging since the state of the system
(registers and RAM) can be large. There are methods to limit the amount
of state the worker [20] needs to copy, but these can complicate the han-
dling of miss-speculation. We chose to leverage the host operating sys-
tem’s copy-on-write (CoW) functionality to provide each sample with
its own copy of the full system state.

In order to use the CoW functionality in the operating system, we
create a copy of the simulator using the fork system call in UNIX when-
ever we need to simulate a new sample. The semantics of fork gives the
new process (the child) a lazy copy (via CoW) of most of the parent
process’s resources. However, when forking the FSA simulator, we need
to solve two problems: shared file handles between the parent and child
and the inability of the child to use the same KVM virtual machine that
the parent is using for fast-forwarding. The first issue simply requires
that the child reopens any file it intends to use. To address the child’s in-
ability to use the parent’s KVM virtual machine, we need to immediately
switch the child to a non-virtualized CPU module upon forking. Since
the virtual CPU module used for fast-forwarding can be in an inconsis-
tent state (e.g., when handling IO or delivering interrupts), we need to
prepare for the switch in the parent before calling fork (this is known as
draining in gem5). By preparing to exit from the virtualized CPU mod-
ule before forking, we allow the child process to switch to a simulated
CPU without having to execute in the virtualized (KVM) CPU module.

One potential problem when using fork to copy the simulation state
is that the parent and child will use the same system disk images. Writes
from one of the processes could easily affect the other. To avoid this we
configure gem5 to use copy-on-write semantics and store the disk writes
in RAM.

Our first implementation of the parallel simulator suffered from dis-
appointing scalability. The primary reason for this poor scaling was due
to a large number of page faults, and a correspondingly large amount of
time spent in the host kernel’s page fault handler. These page faults oc-
cur as a result of the operating system copying data on writes to uphold
the CoW semantics which ensure that the child’s copy of the simulated
system state is not changed by the fast-forwarding parent. An interesting
observation is that most of the cost of copying a page is in the overhead of

155

simply taking the page fault; the actual copying of data is comparatively
cheap. If the executing code exhibits decent spatial locality, we would
therefore expect to dramatically reduce the number of page faults and
their overhead by increasing the page size. In practice, we experienced
much better performance with huge pages enabled.

Warming Error Estimation

We estimate the errors caused by limited warming by re-running detailed
warming and simulation without re-running functional warming. We
implement this by cloning the warm simulator state (forking) before en-
tering the detailed warming mode. The new child then simulates the
pessimistic case (insufficient warming), meanwhile the parent waits for
the child to complete. Once the child completes, the parent continues
to execute and simulates the optimistic case (sufficient warming).

We currently only support error estimation for caches (we plan to
extend this functionality to TLBs and branch predictors), where the op-
timistic and pessimistic cases differ in the way we treat warming misses,
i.e. misses that occur in sets that have not been fully warmed. In the
optimistic case, we assume all warming misses are actual misses (i.e., suf-
ficient warming). This may underestimate the performance of the sim-
ulated cache as some of the misses might have been hits had the cache
been fully warmed. In the pessimistic case, we assume that warming
misses are hits (i.e., worst-case for insufficient warming). This overes-
timates the performance of the simulated cache since some of the hits
might have been capacity misses.

5 Evaluation

To evaluate our simulator we investigate three key characteristics: func-
tional correctness, accuracy of sampled simulation, and performance.
To demonstrate that the virtual CPU module integrates correctly with
gem5, we perform two experiments that separately verify integration
with gem5’s devices and state transfer. These experiments show that
we transfer state correctly, but also uncovers several functional bugs in
gem5’s simulated CPUs. To evaluate the accuracy of our proposed sam-
pling scheme, we compare the results of a traditional, non-sampling, ref-
erence simulation of the first 30 billion instructions of the benchmarks
to sampling using a gem5-based SMARTS implementation and pFSA.
We show that pFSA can estimate the IPC of the simulated applications
with an average error of 2.0%. To investigate sources of the error, we

156

P
ip

e
lin

e gem5’s default OoO CPU

Store Queue 64 entries

Load Queue 64 entries
B

ra
n
ch

P
re

d
ic

to
rs Tournament Predictor 2-bit choice counters, 8 k entries

Local Predictor 2-bit counters, 2 k entries

Global Predictor 2-bit counters, 8 k entries

Branch Target Buffer 4 k entries

C
ac

h
e
s L1I 64 kB, 2-way LRU

L1D 64 kB, 2-way LRU

L2 2 MB, 8-way LRU, stride prefetcher

Table 1: Summary of simulation parameters.

investigate the impact of cache warming on accuracy. Finally, we evalu-
ate scalability in a separate experiment where we show that our parallel
sampling method scales almost linearly up to 28 cores.

For our experiments we simulated a 64-bit x86 system (Debian
Wheezy with Linux 3.2.44) with split 2-way 64 kB L1 instruction and
data caches and a unified 8-way 2MB or 8MB L2 cache with a stride
prefetcher. The simulated CPU uses gem5’s OoO CPU model. See Ta-
ble 1 for a summary of the important simulation parameters. We com-
piled all benchmarks with GCC 4.6 in 64-bit mode with x87 code gen-
eration disabled2. We evaluated the system using the SPEC CPU2006
benchmark suite with the reference data set and the SPEC runtime har-
ness. All simulation runs were started from the same checkpoint of
a booted system. Simulation execution rates are shown running on a
2.3GHz Intel Xeon E5520.

SMARTS, FSA, and pFSA all use a common set of parameters con-
trolling how much time is spent in their different execution modes. In
all sampling techniques, we executed 30 000 instructions in the detailed
warming mode and 20 000 instructions in the detailed sampling mode.
The length of detailed warming was chosen according to the method in
the original SMARTS work [22] and ensures that the OoO pipeline is
warm. Functional warming for FSA and pFSA was determined heuris-
tically to require 5 million and 25 million instructions for the 2MB L2
cache and 8MB L2 cache configurations, respectively. Methods to auto-
matically select appropriate functional warming have been proposed [9,
18] by other authors and we outline a method leveraging our warming
error estimates in the future work section. Using these parameters, we

2We disabled x87 code generation in the compiler, forcing it to generate SSE code
instead, since the simulated gem5CPUs only support a limited number of x87 instructions.

157

took 1000 samples per benchmark. Due to the slow reference simula-
tions, we limit accuracy studies to the first 30 billion instructions from
each of the benchmarks, which corresponds to roughly a week’s worth of
simulation time in the OoO reference. For these cases, the sample period
was adjusted to ensure 1000 samples in the first 30 billion instructions.

Validating Functional Correctness

For a simulation study to be meaningful, we need to be confident that
instructions executed in the simulator produce the right results, i.e., they
are functionally correct. Incorrect execution can result in anything from
subtle behavior changes to applications crashing in the simulated system.
To assess correctness of our gem5 extensions, we rely on SPEC’s built-
in verification harness, which compares the output of a benchmark to
a reference3. In order to use this harness, we execute all benchmarks
to completion with their reference data sets. We verify that our gem5
additions to support hardware virtualization work correctly by running
the benchmarks solely on the virtual CPU module (devices are still sim-
ulated by gem5). This experiment ensures that basic features, such as
the interaction between the memory and simulated device models work
correctly, and that the experimental setup (compilers, OS, and SPEC)
is correct. We then verify that our reference simulations are correct by
completing and verifying them using VFF.

In the first experiment, we verify that the virtual CPU module works
correctly, including its interactions with the virtualized hardware and the
simulated system in gem5. To do this, we execute and verify all bench-
marks using only the virtual CPU module. In this experiment, all bench-
marks executed to completion and completed their verification runs suc-
cessfully. This demonstrates that: a) our virtual CPU module interacts
correctly with the memory system and device models in gem5, and, b)
our simulated system and the benchmark setup are working correctly.

In the second experiment, we evaluate the correctness of our ref-
erence simulations. In this experiment, we simulated all benchmarks
for 30 billion instructions using the detailed CPU module and ran them
to completion using VFF. This experiment showed that 9 out of the
29 benchmarks failed before finishing the simulation of the first 30 billion
instructions and that another 7 failed to verify after running to comple-
tion. In order to verify that the benchmarks that failed after executing
the first 30 billion instructions were not caused by incorrect state trans-
fer between the simulated CPU and the virtual CPU module, we set

3We realize that this is not sufficient to guarantee functional correctness, but we use
SPEC’s verification suite here since it is readily available.

158

B
e
n
ch

m
ar

k
V
e
ri

fi
e
s

in

R
e
fe

re
n
ce

V
e
ri

fi
e
s

u
si

n
g

V
F
F

V
e
ri

fi
e
s

w
h
e
n

S
w

it
ch

in
g

4
0

0
.p

e
rl

b
e
n
ch

4
0

1
.b

zi
p

2
4

1
6

.g
am

e
ss

Y
e
s

Y
e
s

Y
e
s

4
3

3
.m

ilc
4

5
3

.p
o

vr
ay

4
5

6
.h

m
m

e
r

4
5

8
.s

je
n
g

4
6

2
.li

b
q

u
an

tu
m

4
6

4
.h

2
6

4
re

f

4
7

1
.o

m
n
e
tp

p
4

8
1

.w
rf

4
8

2
.s

p
h
in

x
3

4
8

3
.x

al
an

cb
m

k

4
1

0
.b

w
av

e
s

4
3

4
.z

e
u
sm

p
4

3
5

.g
ro

m
ac

s
N

o
Y

e
s

Y
e
s

4
3

6
.c

ac
tu

sA
D

M
4

4
4

.n
am

d
4

5
9

.G
e
m

sF
D

T
D

4
7

0
.lb

m

4
4

5
.g

o
b

m
k

4
5

0
.s

o
p

le
x

4
5

4
.c

al
cu

lix
F
at

al
E
rr

o
r1

Y
e
s

Y
e
s

4
2

9
.m

cf
4

7
3

.a
st

ar
F
at

al
E
rr

o
r2

Y
e
s

Y
e
s

4
3

7
.le

sl
ie

3
d

F
at

al
E
rr

o
r3

Y
e
s

Y
e
s

4
0

3
.g

cc
F
at

al
E
rr

o
r4

Y
e
s

Y
e
s

4
4

7
.d

e
al

II
F
at

al
E
rr

o
r5

Y
e
s

N
o

4
6

5
.t

o
n
to

F
at

al
E
rr

o
r6

Y
e
s

Y
e
s

S
u
m

m
ar

y:
1

3
/

2
9

ve
ri

fi
e
d

,

9
/

2
9

fa
ta

l

2
9

/
2

9
ve

ri
fi
e
d

2
8

/
2

9
ve

ri
fi
e
d

1
.

S
im

u
la

to
r

ge
ts

st
u
ck

.

2
.

T
ri

gg
e
rs

a
m

e
m

o
ry

le
ak

ca
u
si

n
g

th
e

si
m

u
la

to
r

cr
as

h
.

3
.

T
e
rm

in
at

e
s

p
re

m
at

u
re

ly
fo

r
u
n
k
n
o

w
n

re
as

o
n
.

4
.

F
ai

ls
w

it
h

in
te

rn
al

e
rr

o
r.

L
ik

e
ly

d
u
e

to
u
n
im

p
le

m
e
n
te

d
in

st
ru

ct
io

n
s.

5
.

B
e
n
ch

m
ar

k
se

gf
au

lt
s

d
u
e

to
u
n
im

p
le

m
e
n
te

d
in

st
ru

ct
io

n
s.

6
.

T
e
rm

in
at

e
d

b
y

in
te

rn
al

b
e
n
ch

m
ar

k
sa

n
it

y
ch

e
ck

.

T
ab

le
2
:

S
u
m

m
ar

y
o

f
ve

ri
fi
ca

ti
o

n
re

su
lt

s
fo

r
al

l
b

e
n
ch

m
ar

k
s

in
S
P

E
C

C
P

U
2

0
0

6
.

T
h
is

ta
b

le
is

b
as

e
d

o
n

th
re

e
e
x
p

e
ri

m
e
n
ts

:
a

re
fe

re
n
ce

O
o

O

si
m

u
la

ti
o

n
th

at
is

co
m

p
le

te
d

u
si

n
g

th
e

vi
rt

u
al

C
P

U
m

o
d

u
le

,
p

u
re

ly
ru

n
n
in

g
o

n
th

e
vi

rt
u
al

C
P

U
m

o
d

u
le

,
an

d
re

p
e
at

e
d

ly
sw

it
ch

in
g

b
e
tw

e
e
n

a

si
m

u
la

te
d

O
o

O
C

P
U

an
d

th
e

vi
rt

u
al

C
P

U
m

o
d

u
le

.

159

up another experiment where we switched each benchmark 300 times
between the simulated CPU and the virtual CPU module. In this exper-
iment, all benchmarks, with the exception of 447.dealII (which failed
because of unimplemented instructions), ran to completion and verified.
The results of these experiments are summarized in Table 2. Their results
indicate that our virtual CPU module works and transfers state correctly.
Unfortunately, they also indicate that the x86 model in gem5 still has
some functional correctness issues (in our experience, both the Alpha
and ARM models are much more reliable).

Since benchmarks that do not verify take different program paths in
the simulator and on real hardware, we exclude them from the rest of
the evaluation.

Accuracy

A simulator needs to be accurate in order to be useful. The amount of
accuracy needed depends on which question the user is asking. In many
cases, especially when sampling, accuracy can be traded off for perfor-
mance. In this section, we evaluate the accuracy of our proposed paral-
lel sampling methodology. The sampling parameters we use have been
selected to strike a balance between accuracy and performance when es-
timating the average CPI of an application.

All sampling methodologies that employ functional warming suffer
from twomain sources of errors: sampling errors and inaccurate warming.
Our SMARTS and pFSA experiments have been setup to sample at the
same instructions counts, which implies that they should suffer from the
same sampling error4. Functional warming incurs small variations in the
access streams seen by branch predictors and caches since it does not
include effects of speculation or reordering. This has can lead to a small
error, which has been shown [22] to be in the region of 2%. The error
incurred by these factors is the baseline SMARTS error, which in our
experiments is 1.87% for a 2MB L2 cache and 1.18% for an 8MB L2
cache.

Another source of error is the limited functional warming of branch
predictors and caches in FSA and pFSA. In general, our method provides
very similar results to our gem5-based SMARTS implementation. How-
ever, there are a few cases (e.g., 456.hmmer) when simulating a 2MB
cache where we did not apply enough warming. In these case the IPC
predicted by SMARTS is within, or close to, the warming error estimated
by our method (Figure 3(a)). A large estimated warming error generally

4There might be slight differences when the virtual CPU module is used due to small
timing differences when delivering asynchronous events (e.g., interrupts).

160

0.0

0.5

1.0

1.5

2.0

400.perlbench

401.bzip2

416.gam
ess

433.m
ilc

453.povray

456.hm
m
er

458.sjeng

462.libquantum

464.h264ref

471.om
netpp

481.w
rf

482.sphinx3

483.xalancbm
k

Average

In
st

ru
ct

io
n
s

P
e
r

C
yc

le

Reference gem5 SMARTS pFSA

(a) 2 MB L2

0.0

0.5

1.0

1.5

2.0

400.perlbench

401.bzip2

416.gam
ess

433.m
ilc

453.povray

456.hm
m
er

458.sjeng

462.libquantum

464.h264ref

471.om
netpp

481.w
rf

482.sphinx3

483.xalancbm
k

Average

In
st

ru
ct

io
n
s

P
e
r

C
yc

le

Reference gem5 SMARTS pFSA

(b) 8 MB L2

Figure 3: IPC for the first 30 billion instructions of each benchmark as predicted by

a reference simulation compared to a our gem5-based SMARTS implementation and

pFSA. The error bars extending from the pFSA bars represent warming error estimates.

161

0

1

2

3

4

5

0 2 4 6 8 10

R
e
la

ti
ve

IP
C

E
rr

o
r

[%
]

Functional Warming [Million Instructions]

456.hmmer 471.omnetpp

Figure 4: Estimated relative IPC error due to insufficient cache warming as a function

of functional warming length for 456.hmmer and 471.omnetpp.

indicate that a benchmark should have had more functional warming
applied. Note that we can not just assume the higher IPC since some
warming misses are likely to be real misses.

To better understand how warming affects the predicted IPC bound,
we simulated two benchmarks (456.hmmer & 471.omnetpp) with dif-
ferent warming behaviors with different amounts of cache warming. Fig-
ure 4 shows how their estimated warming error relative to the IPC of
the reference simulations shrinks as more cache warming is performed.
These two applications have wildly different warming behavior. While
471.omnetpp only requires two million instructions to reach an esti-
mated warming error less than 1%, 456.hmmer requires more than 10
million instructions to reach the same goal.

Performance & Scalability

A simulator is generally more useful the faster it is as high speed enables
greater application coverage and quicker simulation turn-around times.
Figure 5 compares the execution rates of native execution, VFF, FSA,
and pFSA when simulating a system with a 2MB and 8MB last-level
cache. The reported performance of pFSA does not include warming
error estimation, which adds 3.9% overhead on average. The achieved
simulation rate of pFSA depends on three factors. First, fast-forwarding
using VFF runs at near-native (90% on average) speed, which means that
the simulation rate of an application is limited by its native execution
rate regardless of parallelization. Second, each sample incurs a constant
cost. The longer a benchmark is, the lower the average overhead. Third,

162

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

400.perlbench

401.bzip2

416.gam
ess

433.m
ilc

453.povray

456.hm
m
er

458.sjeng

462.libquantum

464.h264ref

471.om
netpp

481.w
rf

482.sphinx3

483.xalancbm
k

Average

E
x
e
cu

ti
o
n

R
at

e
[G

IP
S
]

Native

Virtualized F-F

pFSA (8 cores)

FSA

(a) 2 MB L2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

400.perlbench

401.bzip2

416.gam
ess

433.m
ilc

453.povray

456.hm
m
er

458.sjeng

462.libquantum

464.h264ref

471.om
netpp

481.w
rf

482.sphinx3

483.xalancbm
k

Average

E
x
e
cu

ti
o
n

R
at

e
[G

IP
S
]

Native

Virtualized F-F

pFSA (8 cores)

FSA

(b) 8 MB L2

Figure 5: Execution rates when simulating a 2MB (a) and 8MB (b) L2 cache for pFSA

and FSA compared to native and fast-forwarding using the virtual CPU module.

163

0

20

40

60

80

100

1 2 3 4 5 6 7 8
0

1

2

3

4

E
x
e
cu

ti
o
n

R
at

e
[%

o
f
n
at

iv
e
]

E
x
e
cu

ti
o
n

R
at

e
[G

IP
S
]

Cores

2MB L2

Ideal

8MB L2

Ideal

Virt. F-F

Fork Max

(a) 416.gamess

0

20

40

60

80

100

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

E
x
e
cu

ti
o
n

R
at

e
[%

o
f
n
at

iv
e
]

E
x
e
cu

ti
o
n

R
at

e
[G

IP
S
]

Cores

(b) 471.omnetpp

Figure 6: Scalability of 416.gamess (a) and 471.omnetpp (b) running on an 2-socket

Intel Xeon E5520.

large caches need more functional warming, and the longer the func-
tional warming, the greater the cost of the sample. As seen when com-
paring the average simulation rates for a 2MB cache and an 8MB cache,
simulating a system with larger caches incurs a larger overhead.

The difference in functional warming length results in different simu-
lation rates for 2MB and 8MB caches. While the 8MB cache simulation
is slower to simulate than the smaller cache, there is also more paral-
lelism available. Looking at the simulation rate when simulating a 2MB
cache as a function of the number of threads used by the simulator (Fig-
ure 6) for a fast (416.gamess) and a slow (471.omnetpp) application, we
see that both applications scale almost linearly until they reach 93% and
45% of native speed respectively. The larger cache on the other hand
starts off at a lower simulation rate and scales linearly until all cores in

164

0

20

40

60

80

100

1 4 8 12 16 20 24 28 32
0

1

2

3

4

5

6

7
E
x
e
cu

ti
o
n

R
at

e
[%

o
f
n
at

iv
e
]

E
x
e
cu

ti
o
n

R
at

e
[G

IP
S
]

Cores

8MB L2

Ideal

Virt. F-F

Fork Max

(a) 416.gamess

0

20

40

60

80

100

1 4 8 12 16 20 24 28 32
0

0.5

1

1.5

2

E
x
e
cu

ti
o
n

R
at

e
[%

o
f
n
at

iv
e
]

E
x
e
cu

ti
o
n

R
at

e
[G

IP
S
]

Cores

(b) 471.omnetpp

Figure 7: Scalability of 416.gamess (a) and 471.omnetpp (b) running on a 4-socket Intel

Xeon E5-4650.

the host system are occupied. We estimate the overhead of copying sim-
ulation state (Fork Max) by removing the simulation work in the child
and keeping the child process alive to force the parent process to do CoW
while fast-forwarding. This is an estimate of the speed limit imposed by
parallelization overheads.

In order to understand how pFSA scales on larger systems, we ran
the scaling experiment on a 4-socket Intel Xeon E5-4650 with a total
of 32 cores. We limited this study to the 8MB cache since simulating
a 2MB cache reached near-native speed with only 8 cores. As seen in
Figure 7, both 416.gamess and 471.omnetpp scale almost linearly until
they reach their maximum simulation rate, peaking at 84% and 48.8%
of native speed, respectively.

165

6 Related Work

Our parallel sampling methodology builds on ideas from three different
simulation and modeling techniques: virtualization, sampling, and par-
allel profiling. We extend and combine ideas from these areas to form
a fully-functional, efficient, and scalable full-system simulator using the
well-known gem5 [3] simulation framework.

Virtualization

There have been several earlier attempts at using virtualization for full-
system simulation. Rosenblum et al. pioneered the use of virtualization-
like techniques with SimOS [14] that ran a slightly modified (relinked
to a non-default memory area) version of Irix as a UNIX process and sim-
ulated privileged instructions in software. PTLsim [23] by Yourst, used
para-virtualization5 to run the target system natively. Due to the use of
para-virtualization, PTLsim requires the simulated operating system to
be aware of the simulator. The simulated system must therefore use a
special para-virtualization interface to access page tables and certain low-
level hardware. This also means that PTLsim does not simulate low-level
components like timers and storage components (disks, disk controllers,
etc.). A practical draw-back of PTLsim is that it practically requires a
dedicated machine since the host operating system must run inside the
para-virtualization environment. Both SimOS and PTLsim use a fast vir-
tualized mode for fast-forwarding and support detailed processor perfor-
mance models. The main difference between them and gem5 with our
virtual CPU module is the support for running unmodified guest operat-
ing systems. Additionally, since we only depend on KVM, our system can
be deployed in shared clusters with unmodified host operating systems.

An interesting new approach to virtualization was taken by Ryck-
bosch et al. in their VSim [15] proposal. This simulator mainly focuses
on IO modeling in cloud-like environment. Their approach employs
time dilation to simulate slower or faster CPUs by making interrupts
happen more or less frequently relative to the instruction stream. Since
the system lacks a detailed CPU model, there are no facilities for detailed
simulation or auto-calibration of the time dilation factor. In many ways,
the goals of VSim and pFSA are very different: VSim focuses on fast
modeling of large IO-bound workloads, while pFSA focuses on sampling
of detailed micro-architecture simulation.

5There are signs of an unreleased prototype of PTLSim that supports hardware
virtualization. However, to the best of our knowledge, no public release has been made
nor report published.

166

Sampling

Techniques for sampling simulation have been proposed many times be-
fore [1, 4, 5, 17, 20–22]. The two main techniques are SimPoint [17]
and SMARTS [22]. While both are based on sampling, SimPoint uses
a very different approach compared SMARTS and pFSA that builds on
checkpoints of representative regions of an application. Such regions
are automatically detected by finding phases of stable behavior. In or-
der to speed up SMARTS, Wenisch et al. proposed TurboSMARTS [20],
which uses compressed checkpoints that include cache state and branch
predictor state. A drawback of all checkpoint-based techniques is long
turn-around time if the simulated software changes due to the need to col-
lect new checkpoints. This makes them particularly unsuitable for many
applications, such as hardware-software co-design or operating system
development. Since pFSA uses virtualization instead of checkpoints to
fast-forward between samples, there is no need to perform costly simu-
lations to regenerate checkpoints when making changes in the simulated
system.

SMARTS has the nice property of providing statistical guarantees on
sampling accuracy. These guarantees assure users who strictly follow the
SMARTS methodology that their sampled IPC will not deviate more
than, for example, 2% with 99.7% confidence. Since we do not perform
always-on cache and branch predictor warming, we can not provide the
same statistical guarantees, but we achieve similar accuracy in practice.
To identify problems with insufficient warming, we have proposed a low-
overhead approach that can estimate the warming error.

The sampling approach most similar to FSA is the one used in COT-
Son [1] by HP Labs. COTSon combines AMD SimNow [2] (a JIT:ing
functional x86 simulator) with a set of performance models for disks,
networks, and CPUs. The simulator achieves good performance by us-
ing a dynamic sampling strategy [5] that uses online phase detection to
exploit phases of execution in the target. Since the functional simulator
they use can not warmmicroarchitectural state, they employ a two-phase
warming strategy similar to FSA. However, unlike FSA, they do not use
hardware virtualization to fast-forward execution, instead they rely on
much slower (10x overhead [1] compared to 10% using virtualization)
functional simulation.

Parallel Simulation

There have been many approaches to parallelizing simulators. We use a
coarse-grained high-level approach in which we exploit parallelism be-
tween samples. A similar approach was taken in SuperPin [19] and

167

Shadow Profiling [12], which both use Pin [8] to profile user-space appli-
cations and run multiple parts of the application in parallel. Shadow Pro-
filing aims to generate detailed application profiles for profile guided com-
piler optimizations, while SuperPin is a general-purpose API for parallel
profiling in the Pin instrumentation engine. Our approach to paralleliza-
tion draws inspiration from these two works and uses parallelism to over-
lap detailed simulation of multiple samples with native execution. The
biggest difference is that we apply the technique to full-system simula-
tion instead of user-space profiling.

Another approach to parallelization is to parallelize the core of the
simulator. A significant amount of research has been done on parallel dis-
crete event simulation (PDES), each proposal with its own trade-offs [6].
Optimistic approaches try to run as much as possible in parallel and roll-
back whenever there is a conflict. Implementing such approaches can
be challenging since they require old state to be saved. Conservative ap-
proaches typically ensure that there can never be conflicts by synchro-
nizing at regular intervals whose length is determined by the shortest
critical path between two components simulated in parallel. The latter
approach was used in the Wisconsin Wind Tunnel [13]. More recent
systems, for example Graphite [11], relax synchronization even further.
They exploit the observation that functional correctness is not affected
as long as synchronization instructions (e.g., locks) in the simulated sys-
tem enforce synchronization between simulated threads. The amount
of drift between threads executed in parallel can then be configured to
achieve a good trade-off between accuracy and performance.

The recent ZSim [16] simulator takes another fine-grained approach
to parallelize the core of the simulator. ZSim simulates applications in
two phases, a bound and a weave phase, the phases are interleaved and
only work on a small number of instructions at a time. The bound phase
executes first and provides a lower bound on the latency for the simu-
lated block of instructions. Simulated threads can be executed in paral-
lel since no interactions are simulated in this phase. The simulator then
executes the weave phase that uses the traces from the bound phase to
simulate memory system interactions. This can also be done in parallel
since the memory system is divided into domains with a small amount of
communication that requires synchronization. Since ZSim is Pin-based,
ZSim only supports user-space x86 code and does not simulate any de-
vices (e.g., storage and network). The main focus of ZSim is simulating
large parallel systems.

Methods such as PDES or ZSim are all orthogonal to our pFSA meth-
od since they work at a completely different level in the simulator. For ex-
amples, a simulator using PDES techniques to simulate in parallel could

168

be combined with pFSA to expose even more parallelism than can be
exposed by PDES alone.

7 Future Work

There are several features and ideas we would like to explore in the fu-
ture. Most notably, we would like add support for running multiple
virtual CPUs at the same time in a shared-memory configuration when
fast-forwarding. KVM already supports executing multiple CPUs shar-
ing memory by running different CPUs in different threads. Implement-
ing this in gem5 requires support for threading in the core simulator,
which is ongoing work from other research groups. We are also looking
into ways of extending warming error estimation to TLBs and branch pre-
dictors. An interesting application of warming estimation is to quickly
profile applications to automatically detect per-application warming set-
tings that meet a given warming error constraint. Additionally, an online
implementation of dynamic cache warming could use feedback from pre-
vious samples to adjust the functional warming length on the fly and use
our efficient state copying mechanism to roll back samples with too short
functional warming.

8 Summary

In this paper, we have presented a virtualized CPUmodule for gem5 that
on average runs at 90% of the host’s execution rate. This CPU module
can be used to efficiently fast-forward simulations to efficiently create
checkpoints of points of interest or to implement efficient performance
sampling. We have demonstrated how it can be used to implement an
efficient parallel sampler, pFSA, which accurately (IPC error of 2.2% and
1.9% when simulating 2MB and 8MB L2 caches respectively) estimates
application behavior with high performance (63% or 25% of native de-
pending on cache size). Compared to detailed simulation, our parallel
sampling simulator results in 7 000x–19 000x speedup.

169

Acknowledgments

Initial work on hardware virtualization support in gem5 was sponsored
by ARM, where the authors would especially like to thank Matthew
Horsnell, Ali G. Saidi, Andreas Hansson, Marc Zyngier, and Will Dea-
con for valuable discussions and insights. Reference simulations were
performed on resources provided by the Swedish National Infrastruc-
ture for Computing (SNIC) at Uppsala Multidisciplinary Center for Ad-
vanced Computational Science (UPPMAX). This work was financed by
the CoDeR-MP project and the UPMARC research center.

References

[1] Eduardo Argollo, Ayose Falcón, Paolo Faraboschi, Matteo
Monchiero, and Daniel Ortega. “COTSon: Infrastructure for Full
System Simulation”. In: ACM SIGOPS Operating Systems Review
43.1 (Jan. 2009), pp. 52–61. DOI: 10.1145/1496909.1496921.

[2] Robert Bedicheck. “SimNow™: Fast Platform Simulation Purely
in Software”. In: Hot Chips: A Symposium on High Performance
Chips. Aug. 2005.

[3] Nathan Binkert, Somayeh Sardashti, Rathijit Sen, Korey Sewell,
Muhammad Shoaib, Nilay Vaish, Mark D. Hill, David A. Wood,
Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, and Tushar
Krishna. “The gem5 Simulator”. In: ACM SIGARCH Computer
Architecture News 39.2 (Aug. 2011). DOI: 10 . 1145 / 2024716 .
2024718.

[4] Shelley Chen. “Direct SMARTS: Accelerating Microarchitectural
Simulation through Direct Execution”. MA thesis. Carnegie Mel-
lon University, 2004.

[5] Ayose Falcón, Paolo Faraboschi, and Daniel Ortega. “Combining
Simulation and Virtualization through Dynamic Sampling”. In:
Proc. International Symposium on Performance Analysis of Systems
& Software (ISPASS). Apr. 2007, pp. 72–83. DOI: 10 . 1109 /
ISPASS.2007.363738.

[6] Richard M. Fujimoto. “Parallel Discrete Event Simulation”. In:
Communications of the ACM 33.10 (Oct. 1990), pp. 30–53. DOI:
10.1145/84537.84545.

[7] Avi Kivity, Uri Lublin, and Anthony Liguori. “kvm: the Linux Vir-
tualMachineMonitor”. In: Proc. Linux Symposium. 2007, pp. 225–
230.

170

http://dx.doi.org/10.1145/1496909.1496921
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1109/ISPASS.2007.363738
http://dx.doi.org/10.1109/ISPASS.2007.363738
http://dx.doi.org/10.1145/84537.84545

[8] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and
Kim Hazelwood. “Pin: Building Customized Program Analysis
Tools with Dynamic Instrumentation”. In: Proc. ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI). 2005. DOI: 10.1145/1065010.1065034.

[9] Yue Luo, Lizy K. John, and Lieven Eeckhout. “Self-Monitored
Adaptive Cache Warm-Up for Microprocessor Simulation”. In:
Proc. Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD). 2004, pp. 10–17. DOI: 10.1109/SBAC-
PAD.2004.38.

[10] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann,
Michael R. Marty, Min Xu, Alaa R. Alameldeen, Kevin E.
Moore, Mark D. Hill, and David A. Wood. “Multifacet’s General
Execution-driven Multiprocessor Simulator (GEMS) Toolset”. In:
ACM SIGARCH Computer Architecture News 33 (2005), pp. 92–
99. DOI: 10.1145/1105734.1105747.

[11] Jason E. Miller, Harshad Kasture, George Kurian, Charles Gru-
enwald, Nathan Beckmann, Christopher Celio, Jonathan Eastep,
and Anant Agarwal. “Graphite: A Distributed Parallel Simula-
tor for Multicores”. In: Proc. International Symposium on High-
Performance Computer Architecture (HPCA). Jan. 2010, pp. 1–12.
DOI: 10.1109/HPCA.2010.5416635.

[12] Tipp Moseley, Alex Shye, Vijay Janapa Reddi, Dirk Grunwald,
and Ramesh Peri. “Shadow Profiling: Hiding Instrumentation
Costs with Parallelism”. In: Proc. International Symposium on Code
Generation and Optimization (CGO). IEEE, Mar. 2007, pp. 198–
208. DOI: 10.1109/CGO.2007.35.

[13] Steven K. Reinhardt, Mark D. Hill, James R. Larus, Alvin R.
Lebeck, James C. Lewis, and David A. Wood. “The Wisconsin
Wind Tunnel: Virtual Prototyping of Parallel Computers”. In:
ACM SIGMETRICS Performance Evaluation Review 21.1 (June
1993), pp. 48–60. DOI: 10.1145/166962.166979.

[14] M. Rosenblum, S.A. Herrod, E. Witchel, and A. Gupta. “Com-
plete Computer System Simulation: The SimOS Approach”. In:
Parallel & Distributed Technology: Systems & Applications 3.4 (Jan.
1995), pp. 34–43. DOI: 10.1109/88.473612.

[15] Frederick Ryckbosch, Stijn Polfliet, and Lieven Eeckhout. “VSim:
Simulating Multi-Server Setups at Near Native Hardware Speed”.
In: ACM Transactions on Architecture and Code Optimization
(TACO) 8 (2012), 52:1–52:20. DOI: 10.1145/2086696.2086731.

171

http://dx.doi.org/10.1145/1065010.1065034
http://dx.doi.org/10.1109/SBAC-PAD.2004.38
http://dx.doi.org/10.1109/SBAC-PAD.2004.38
http://dx.doi.org/10.1145/1105734.1105747
http://dx.doi.org/10.1109/HPCA.2010.5416635
http://dx.doi.org/10.1109/CGO.2007.35
http://dx.doi.org/10.1145/166962.166979
http://dx.doi.org/10.1109/88.473612
http://dx.doi.org/10.1145/2086696.2086731

[16] Daniel Sanchez and Christos Kozyrakis. “ZSim: Fast and Accurate
Microarchitectural Simulation of Thousand-Core Systems”. In:
Proc. International Symposium on Computer Architecture (ISCA).
July 2013, pp. 475–486. DOI: 10.1145/2485922.2485963.

[17] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad
Calder. “Automatically Characterizing Large Scale Program Be-
havior”. In: Proc. Internationla Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS).
2002, pp. 45–57. DOI: 10.1145/605397.605403.

[18] Michael Van Biesbrouck, Brad Calder, and Lieven Eeckhout. “Ef-
ficient Sampling Startup for SimPoint”. In: IEEE Micro 26.4 (July
2006), pp. 32–42. DOI: 10.1109/MM.2006.68.

[19] Steven Wallace and Kim Hazelwood. “SuperPin: Parallelizing Dy-
namic Instrumentation for Real-Time Performance”. In: Proc. Inter-
national Symposium on Code Generation and Optimization (CGO).
Mar. 2007, pp. 209–220. DOI: 10.1109/CGO.2007.37.

[20] Thomas F. Wenisch, Roland E. Wunderlich, Babak Falsafi, and
James C. Hoe. “TurboSMARTS: Accurate Microarchiteecture
Simulation Sampling in Minutes”. In: ACM SIGMETRICS Perfor-
mance Evaluation Review 33.1 (June 2005), pp. 408–409. DOI:
10.1145/1071690.1064278.

[21] Thomas F. Wenisch, Roland E. Wunderlich, Michael Ferdman,
Anastassia Ailamaki, Babak Falsafi, and James C. Hoe. “SimFlex:
Statistical Sampling of Computer System Simulation”. In: IEEE
Micro 26.4 (July 2006), pp. 18–31. DOI: 10.1109/MM.2006.79.

[22] Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and
James C. Hoe. “SMARTS: Accelerating Microarchitecture Simula-
tion via Rigorous Statistical Sampling”. In: Proc. International Sym-
posium on Computer Architecture (ISCA). 2003, pp. 84–95. DOI:
10.1109/ISCA.2003.1206991.

[23] Matt T. Yourst. “PTLsim: A Cycle Accurate Full System x86-64
Microarchitectural Simulator”. In: Proc. International Symposium
on Performance Analysis of Systems & Software (ISPASS). Apr.
2007, pp. 23–34. DOI: 10.1109/ISPASS.2007.363733.

172

http://dx.doi.org/10.1145/2485922.2485963
http://dx.doi.org/10.1145/605397.605403
http://dx.doi.org/10.1109/MM.2006.68
http://dx.doi.org/10.1109/CGO.2007.37
http://dx.doi.org/10.1145/1071690.1064278
http://dx.doi.org/10.1109/MM.2006.79
http://dx.doi.org/10.1109/ISCA.2003.1206991
http://dx.doi.org/10.1109/ISPASS.2007.363733

	Introduction
	Cache Bypass Modeling for Automatic Optimizations
	Efficient Cache Modeling
	Classifying Cache Behavior
	Optimizing Memory Accesses Causing Cache Pollution
	Effects on Benchmark Classification
	Summary

	Modeling Cache Sharing
	Measuring Cache-Dependent Behavior
	Modeling Cache Sharing
	Modeling LRU Replacement
	Modeling Time
	Summary

	Efficient Simulation Techniques
	Integrating Simulation and Hardware Virtualization
	Hardware-Accelerated Sampling Simulation
	Exploiting Sample-Level Parallelism
	Estimating Warming Errors
	Summary

	Ongoing & Future Work
	Multicore System Simulation
	Efficient Cache Warming

	Summary
	Svensk sammanfattning
	Bakgrund
	Sammanfattning av forskningen

	Acknowledgments
	References
	Reducing Cache Pollution Through Detection and Elimination of Non-Temporal Memory Accesses
	Introduction
	Managing caches in software
	Cache management instructions
	Low-overhead cache modeling
	Identifying non-temporal accesses
	A first simplified approach
	Refining the simple approach
	Handling sticky ETM bits
	Handling sampled data

	Evaluation methodology
	Model system
	Benchmark preparation
	Algorithm parameters
	Benchmarks

	Results and analysis
	Related work
	Summary and future work

	Efficient Techniques for Predicting Cache Sharing and Throughput
	Introduction
	Modeling Cache Sharing
	Low-Overhead Input Data
	Modeling Random Caches
	Modeling LRU Caches

	Evaluation (Simulator)
	Experimental Setup
	Simulation Results

	Evaluation (Hardware)
	Experimental Setup
	Results
	Estimating Bandwidth and Throughput

	Related Work
	Future Work

	Modeling Performance Variation Due to Cache Sharing in Multicore Systems
	Introduction
	Putting it Together
	Cache Sharing
	Cache Pirating
	Phase Detection

	Time Dependent Cache Sharing
	Dynamic-Windows: Merging Sample-Windows
	Phase: Reusing Cache-Sharing Results

	Evaluation
	Experimental Setup
	Benchmark Selection
	Performance: Speedup
	Accuracy: Average Slowdown Error
	Performance Variability
	Error: Performance Variability

	Case Study – Modeling Multi-Cores
	Related Work
	Conclusions

	Full Speed Ahead: Detailed Architectural Simulation at Near-Native Speed
	Introduction
	Overview of FSA Sampling
	Background
	gem5: Full-System Discrete Event Simulation
	Hardware Virtualization

	Implementation
	Hardware Virtualization in gem5
	Cloning Simulation State in gem5
	Warming Error Estimation

	Evaluation
	Validating Functional Correctness
	Accuracy
	Performance & Scalability

	Related Work
	Virtualization
	Sampling
	Parallel Simulation

	Future Work
	Summary

