
Every Walk’s a Hit: Making Page Walks Single-Access Cache Hits
Chang Hyun Park
Uppsala University
Uppsala, Sweden

chang.hyun.park@it.uu.se

Ilias Vougioukas
Arm Research

Cambridge, United Kingdom
Ilias.Vougioukas@arm.com

Andreas Sandberg
Arm Research

Cambridge, United Kingdom
andreas.sandberg@arm.com

David Black-Schaffer
Uppsala University
Uppsala, Sweden

david.black-schaffer@it.uu.se

ABSTRACT
As memory capacity has outstripped TLB coverage, large data ap-
plications suffer from frequent page table walks. We investigate
two complementary techniques for addressing this cost: reducing
the number of accesses required and reducing the latency of each
access. The first approach is accomplished by opportunistically
“flattening” the page table: merging two levels of traditional 4 KB
page table nodes into a single 2MB node, thereby reducing the
table’s depth and the number of indirections required to traverse
it. The second is accomplished by biasing the cache replacement
algorithm to keep page table entries during periods of high TLB
miss rates, as these periods also see high data miss rates and are
therefore more likely to benefit from having the smaller page table
in the cache than to suffer from increased data cache misses.

We evaluate these approaches for both native and virtualized
systems and across a range of realistic memory fragmentation
scenarios, describe the limited changes needed in our kernel imple-
mentation and hardware design, identify and address challenges
related to self-referencing page tables and kernel memory alloca-
tion, and compare results across server and mobile systems using
both academic and industrial simulators for robustness.

We find that flattening does reduce the number of accesses re-
quired on a page walk (to 1.0), but its performance impact (+2.3%) is
small due to Page Walker Caches (already 1.5 accesses). Prioritizing
caching has a larger effect (+6.8%), and the combination improves
performance by +9.2%. Flattening is more effective on virtualized
systems (4.4 to 2.8 accesses, +7.1% performance), due to 2D page
walks. By combining the two techniques we demonstrate a state-of-
the-art +14.0% performance gain and -8.7% dynamic cache energy
and -4.7% dynamic DRAM energy for virtualized execution with
very simple hardware and software changes.

CCS CONCEPTS
•Computer systems organization→Architectures; • Software
and its engineering→ Virtual memory.

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9205-1/22/02.
https://doi.org/10.1145/3503222.3507718

KEYWORDS
Flattened page table, page table cache prioritization
ACM Reference Format:
Chang Hyun Park, Ilias Vougioukas, Andreas Sandberg, and David Black-
Schaffer. 2022. Every Walk’s a Hit: Making Page Walks Single-Access Cache
Hits. In Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS ’22),
February 28 – March 4, 2022, Lausanne, Switzerland. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3503222.3507718

1 INTRODUCTION
The problem: Traditional page walks do not scale well with
large data sets.While memory capacity has grown by 100× over
the past decade, TLB sizes have merely tripled to around 1500 L2
TLB entries, delivering a reach of only 3GB with 2MB large pages.
As a result, applications that use the large amount of available
physical memory often suffer from significant numbers of TLB
misses and resulting pagewalk delays. Virtualized environments see
an even larger penalty for the 2D page walk to translate each level of
the guest page walk on the hypervisor side [17]. This problem will
be exacerbated with 5-level page tables for larger memories [31].

Background: Traditional page table trees have significant
overheads on today’s systems. Traditional page tables were de-
signed with the assumption that memory is managed in contiguous
blocks of exactly one page. The practical implication of this is that
nodes in the page table are the same size as a page, leading to a
multi-level deep tree of 4 KB page table nodes, each mapped to
its own 4KB memory page. Having each page table node be one
memory page vastly simplifies allocation as the operating system
does not have to maintain a separate reserve of larger blocks to
guarantee it can allocate larger page table nodes. Keeping the nodes
small also avoids wasting memory due to fragmentation. However,
the small size of the page table node allocations combined with
today’s large memory capacities results in a deep page table tree,
which incurs multiple serial memory indirections on each page
table walk.

Solution: Flatten the page table to reduce indirections and
prioritize caching the page table to reduce latency.While there
have been many proposals to increase the effective TLB coverage to
avoid page walks, we instead seek to reduce the cost of page walks.
First, we reduce the number of architectural memory accesses in
a page table walk (typically 4 without virtualization or 24 with
virtualization enabled). This is done by flattening the page table to
reduce the number of indirections required for a page walk by using

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

128

https://orcid.org/0000-0002-8250-8574
https://orcid.org/0000-0003-1444-4326
https://orcid.org/0000-0001-9349-5791
https://orcid.org/0000-0001-5375-4058
https://doi.org/10.1145/3503222.3507718
https://doi.org/10.1145/3503222.3507718

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Chang Hyun Park, Ilias Vougioukas, Andreas Sandberg, and David Black-Schaffer

dc gups
0

2

Accesses
Baseline Flattened

dc gups
0

100

Latency
Baseline Cached

dc gups

0.8

1.0

Net Energy
Cache DRAM

Figure 1: Left: reduction in memory requests per page walk
from flattening the page table. Center: reduction in page walk
latency from prioritizing caching page table entries. Right:
reduction in dynamic energy of the cache hierarchy and
DRAM from flattening and prioritizing. For benchmarks
with high/low (gups/dc) TLB miss rates

large pages to storemore entries in each page table node. Second, we
reduce the latency of the accesses by increasing the effectiveness of
on-chip caches for the page table. This is achieved by preferentially
caching page table entries during periods of high TLBmisses and low
data reuse. Together, we reduce the number of memory accesses
per translation to 1 (non-virtualized) or 3 (virtualized), and reduce
average walk latencies from 50.9 cycles down to 29.1 cycles.

Flattening the page table is based on two observations. First,
the radix nature of the page table tree structure allows two lev-
els of standard (4 KB) page table nodes to be combined into one
level of large (2MB) nodes. This reduces the tree’s depth and the
number of indirections required to walk the tree, while leverag-
ing existing 2MB page support. And, second, the page table itself
is so much smaller and more static than the actual data, that the
bloating [34, 42] and variable latency [34, 41] problems that plague
2MB pages for data are not significant. To take advantage of these
observations, we flatten the page table using large pages for nodes.
To ensure that the OS is able to reliably allocate page table nodes,
we make flattening optional on a per page table node basis. Through
a prototype, we find that the OS changes required to implement
this new arrangement are small.

Concretely, for an 8GB application we can reduce the number
of pages in the ≈16MB page table from 4106 4KB pages with a
standard 4-level table to only nine 2MB pages in a flattened 2-level
table, thereby reducing the number of indirections required on TLB
misses from 4 to 2. While this incurs a ≈2MB overhead (9 × 2MB
vs. 4106× 4 KB), the cost is negligible for large applications because
the total size of the page table is so small (18MB vs. 8 GB data).

Prioritizing caching page table entries is also based on two ob-
servations. First, the page table itself is close to the size of the LLC,
and, second, high TLB miss rates are correlated with high data
miss rates. This implies that we can expect to keep most of the
page table in the cache and that doing so will not significantly hurt
data access latency. We find that preferentially keeping page table
entries in the cache during phases of high TLB miss rates is a simple
and effective way to reduce the latency of page walk accesses, and,
when combined with flattening, we can achieve single-access cache
hits for most page walks.

Context: PageWalkerCaches are excellent. Pagewalk caches
(PWCs) already reduce the theoretical 4 memory system accesses
per page walk to < 1.5 on average (max 2.5 on our random access
benchmark), and from 24 to 4.4 for virtualized systems. Flattening

reduces this to 1 (2.8 virtualized), while cache prioritization reduces
the latency of each access.

Contributions. The impact of our approach for applications
with relatively few TLBmisses (dc) and many (gups) is shown in Fig-
ure 1. While flattening significantly reduces the number of memory
requests per page walk (left), by itself it has limited performance
benefit. However, for virtualized systems, and with realistic mem-
ory fragmentation, its impact increases significantly (Section 4), as
they have more complex page walks and more pages in the their
page tables. Prioritization significantly reduces latency (middle) by
avoiding most DRAM accesses for page walks and does so with-
out significantly hurting the overall cache performance (Section 5).
When combined, the approaches beat the state of the art for per-
formance and deliver significant reductions in dynamic cache and
DRAM energy (right). Our contributions:

• We identify, evaluate, and combine complementary
approaches for reducing the impact of page walks: flattening
to reduce the number of accesses and cache prioritization to
reduce their latency.

• We identify and quantify the importance of handling large
allocation failures in the kernel on real systems.

• We demonstrate the flexibility to dynamically choose where
in the page table to flatten to efficiently support large data
pages and evaluate its impact across three fragmentation
scenarios.

• We quantify the benefits for virtualized systems and explore
the trade-offs in flattening the page table for the host, guest,
or both in virtualized systems.

• We show that flattened tables are not naturally compatible
with recursive page tables and provide an efficient derefer-
encing solution.

• We demonstrate the limited OS changes required by report-
ing on the code changes for a Linux implementation of a
flattened page table.

• We present simulations from server and mobile system on
academic and industrial simulators for robustness.

2 RELATEDWORK
There has been a tremendous amount of work aimed at improving
translation range and efficiency (and thereby reducing the number
of page walks) [8, 16, 21, 23, 25, 27, 33, 33, 37, 38, 42–46, 53]. Other
works have focused on reducing the TLBmiss penalty by improving
the page table walk caches [14, 17, 18], using speculation to hide
latency [5, 8, 15, 47], optimizing hash page tables [52], and replicat-
ing page tables across NUMA nodes [3]. For virtualized systems,
Gandhi et al. proposed merging the 2D page table into a single
dimension where possible [26]. Ahn et al. proposed flat host page
tables for precisely the virtual machine memory size [5], which
will perform similarly to our host page table flattening without
the benefits of our guest-flattening. Ausavarungnirun et al. pro-
posed bypassing the shared cache for the lower levels of the tree to
avoid pollution in throughput-oriented GPU systems [13]. Mazum-
dar et al. proposed predicting dead TLB entries and dead page table
entries in the LLC [37]. This could be used to extend our cache
prioritization, although we have not investigated this. Below we

129

Every Walk’s a Hit: Making Page Walks Single-Access Cache Hits ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

discuss four works that seek to directly reduce the cost of page
walks.

Ryoo et al. proposed POM_TLB [48] to use a part of the DRAM as
a large set-associative TLB. This requires a single memory lookup,
and the entries can be cached. On a miss in the in-DRAM TLB,
a conventional page table walk is required. Because this space is
allocated at system boot, the required large contiguous partition
can be guaranteed. This approach has the benefit of not requiring
any OS changes, but comes at the cost of the complexity of scanning
the structure at address space teardown, and possible interference
or security implications as the on-DRAM TLB is shared by all cores,
processes, and VMs. Marathe et al. extended POM_TLBwith a cache
prioritization extension (CSALT [35]), to keep page table entries in
the cache during frequent context switches.

Margaritov et al. proposed ASAP [36], which prefetches the
lower levels of the page table during the time spent accessing the
higher levels. However, as modern PWCs effectively eliminate the
accesses to the higher levels, our simulations show very little oppor-
tunity for such prefetching. ASAP requires that appropriate pages
are stored sequentially in memory to enable prefetching without
pointer chasing. This requires that the kernel can allocate contigu-
ous segments of memory for page table entries for prefetching to
function, which is difficult to guarantee. If such regions are not
available, ASAP is unable to prefetch.

Elastic Cuckoo Hashing [49] restructures the page table into a
hash table to generate lookup addresses without pointer chasing.
ECH uses multiple hashed regions for parallel lookups, which re-
quires the OS to allocate large contiguous blocks upon creating or
resizing the page table. Since the OS cannot guarantee large contigu-
ous memory allocations, this would make it difficult to implement
in practice.

Compendia [6] is a parallel work that addressed flattening the
page table. They claim roughly twice the performance benefits that
we observed. However, their methodology uses saved page walk
cycle estimates to compute performance change rather than simu-
lation, and does not include overlapping page walks, a data cache
hierarchy, or realistic memory fragmentation [42, 54], which may
account for the differences. Further, they do not claim a kernel pro-
totype, address self-referencing page tables, or compare to previous
proposals.

Flattening alone achieves comparable main memory access re-
ductions to what ECH could achieve (with its way-caching), but
without the complexity of dynamically resizing the hash table, is
better than what POM_TLB could achieve, as its cache does not
cover the full page table, and is simpler than ASAP, as the layout
modification leverages existing large page support. Importantly,
flattening provides a graceful fallback to 4KB pages when larger
contiguous allocations fail, which our prototype kernel shows hap-
pens on heavily-loaded systems (Section 6.2). As a result, propos-
als that require large contiguous allocations to function (such as
ECH) face severe implementation challenges. Our final proposal to
combine flattening and cache prioritization goes beyond CSALT’s
prioritization as it does not require a separate POM_TLB cache to
achieve similar results, and improves on Compendia in both energy
and performance by coordinating with the memory hierarchy.

Virtual page number OffsetVirtual Address

L1L4 L3 L2

Flat
L4+L3

Flat
L2+L1 2 MB Pages for page tables

(262 144 × 4 KB mappings)

4 KB Pages
for page tables

Conventional
CR3/TTBR

CR3/TTBR

Flattened

Figure 2: Conventional 4-level page table (top) and our pro-
posed 2-level flattened page table (bottom). We utilize 2MB
pages for the flattened L4+L3 and flattened L2+L1 page table
levels, however flattening can be applied using many combi-
nations of natively supported page sizes.

3 FLATTENING THE PAGE TABLE
Page tables are organized as trees that entail a series of memory
indirections for each page walk. These pointer-chasing accesses
lead to long latencies to satisfy TLB misses. We can reduce the
number of levels in the tree (flatten it) to reduce the number of
indirections by using larger nodes in the tree. When combined
with modern page walker caches (PWCs), this achieves effective
page walks of a single memory access. In Section 5 we will add
preferential caching to make this single access a cache hit.

3.1 Conventional Page Tables
We consider conventional 64-bit x86 andArm page tables, which use
a page size of 4 KB and entry size of 8 B, leading to a 512-ary radix
tree. However flattening can be applied to other configurations.
Figure 2 illustrates address translation pointer chasing through the
page table tree for conventional (4 KB nodes, top) and one flattened
(2MB nodes, bottom) page table configuration. The conventional
tree has 512 entries per level, with each 9-bit segment of the address
used to index within each level1, and the address of the first page
table node in the CR3 (x86) or TTBR (Arm) register.

While an L1 (leaf) page table entry represents a 4 KB virtual
memory region, each entry in higher-level nodes can either point
to a lower-level node or directly represent a translation of a larger
region: e.g., L2 entries can either point to an L1 node of 512 4KB
translations or directly translate a contiguous 512× 4 KB = 2MB re-
gion. Thus the page table elegantly supports large pages by tracking
whether each entry is a pointer to a lower-level node or direct trans-
lation. Some TLB designs leverage this fact to store partial walks
and final translations in the same HW structure (e.g. L2 TLB) [9, 12].

3.2 Flattening the Page Table
Flattening uses the radix nature of the page table to naturally merge
levels of the page table into single, larger levels, resulting in a shal-
lower tree. Merging two levels results in page table levels that
naturally use the next larger page size. For example, consider merg-
ing the L2 and L1 levels in the page table. As each 4KB L2 node
points to 512 4 KB L1 nodes, and each L1 node provides 512 trans-
lations, if we flatten the L2 and L1 levels, we would replace each L2
1We label the page table L4, L3, L2 and L1 from root to leaf.

130

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Chang Hyun Park, Ilias Vougioukas, Andreas Sandberg, and David Black-Schaffer

Flat
L4+L3

Flat
L2+L1

262 144 x 4 KB Region
4 KB Translation
in Flattened L2+L1

(L4+L3) and (L2+L1) flattened
Flat
L4+L3

L2

512 x 4 KB Region
4 KB Transla;on in L1

L1

2 MB Translation
in L2

(L4+L3) flattened (L3+L2) flattened
L4 Flat

L3+L2
L1

4 KB Transla;on
in L1

2 MB Transla;on
in Fla=ened L3+L2

L2 512 x 2 MB Region
2 MB Translation in L21GB VA

Figure 3: Flattening the L4+L3 and L2+L1 levels (left): 4KB pages (flattened L2+L1) require only two accesses, while 2MB pages
are mapped to 1GB VA ranges that do not flatten their L2+L1 (unflattened L2). Other approaches may flatten the first two levels
(middle, L4+L3) or the middle two levels (right, L3+L2). Our prototype OS implementation targets flattening L3+L2 (right) while
our evaluations look at flattening both L4+L3 and L2+L1 (left).

node and its 512 L1 child nodes with a single 2MB flattened node,
which covers all 512 × 512 (262 144) translations (Figure 2, bottom).
If all translations in the region are mapped, this approach saves the
4 KB of space needed to hold the original L2 node. However, if some
L1-sized regions of the translations are not mapped, this approach
will waste 4 KB of space for each such region. In the traditional page
table, L1-sized regions that are not used would not have allocated
4 KB page table nodes, thereby saving memory. This bloating in the
page table itself is a side-effect of flattening the page table, but as
the page table itself is a minuscule fraction of the size of the actual
data (roughly 1/512th the size with regular pages and a contiguous
VA space), the overhead is negligible.

The choice of which page table levels to flatten is flexible. In
this work, we use the design shown in the bottom of Figure 2
where we flatten the first two (L4+L3) and the latter two (L2+L1)
levels into 2MB page table nodes. However, one could flatten L3+L2
instead2, which would be beneficial in the presence of 2MB data
pages (shown in Figure 3, right), or possibly even flatten the top
three levels (L4+L3+L2) using a 1GB page table node that points to
2MB data pages directly. Alternatively, one could flatten the top
two levels (L4+L3) using 2MB page table nodes and allocate all
memory in 1GB data pages. These approaches all have different
trade-offs in terms of bloating within the page table itself and the
ease of creating sufficiently large allocations. The choice of which
levels to flatten can be made on a per-process and per-table basis
at runtime by the OS, with or without application hints.

Because they are based on the radix nature of the page table,
flattened page tables provide a key characteristic for practical im-
plementation: graceful fallback to conventional page tables when
needed. If the OS is unable to allocate a 2MB page for a flattened
page table node, it can instead allocate the standard two levels of
4 KB page table nodes at any place in the page table with no addi-
tional overhead. This allows the OS to choose whether to take the
time at allocation for compaction, merge the two levels at a later
point when a 2MB page is available, or simply use the standard
two-level approach.

Only small changes are needed to support flattened page tables.
The system architecture needs to be able to inform the hardware
page walker of which nodes are flattened with one bit in one of

2We have also simulated this flattening on both our simulators but omit them from
the paper due to space constraints. Representative results can be seen in the mobile
case study in Figure 14.

the control registers for the root and one bit in each page table
entry (two bits to support 1GB flattened nodes). The hardware
page table walker can then read those bits to determine which parts
of the virtual address should be used for index bits at each level.
We describe the changes in more detail in Section 6.1.

In order to use the flattened page tables, the encoding of the VA
bits that are used for the indexing of the page tables needs to be
adjusted. Traditionally for a 4-level tree structure every page table
has 29 = 512 entries. This means that the VA is decoded using 9
bits to index into the page tables and 12 bits which are used for
the offset once the translation is complete, and the page has been
retrieved.

When flattening tables, each combined table structure consists of
29 × 29 = 262 144 entries fitting into a 2MB page. In this case, each
flattened table requires 18 bits for indexing. As shown in Figure 2
(bottom) this still requires the same total number of VA bits in
order to traverse the page table structure and recover the physical
address.

3.3 Page Walk Caches
Pagewalks are cached in threeways: translation caches (TLBs), page
table entries in the regular data cache hierarchy, and through Page
Walker Caches (PWCs), such as Intel’s Paging Structure Cache [29].
The PWC allows walks to skip lookups for some levels of page
table by matching the index bits of each level of the page table
node with those cached by previous page walks. Intel’s PWC is
organized in three depths of translation caching: L4, L3 and L2. An
L4 PWC holds previous walk paths that share the top 9 bit virtual
address, allowing the walker to skip accessing the L4 page table
entry, and go directly to the L3 page table entry. As each L4 entry
covers 512GB of virtual address space, this means that accesses
that stay within a 512GB virtual address range will hit in the PWC
and be able to skip the L4 lookup. With an L2 PWC, a walk that
matches all upper 27 bits of the virtual address will be able to skip
the first three levels of the page table, and directly access the level 1
page table node. Such L2 PWC hits enable single-access translations
(only a L1 entry access is required) for TLB misses within 2MB
regions of virtual address space.

Thus, the PWC enables page walks to skip one, two or three
levels of the page walk depending on the locality of the virtual
address. The impact of the PWC is shown in Figure 10, baseline.
The PWC enables skipping an average of 2.2 to 2.9 of the 4 accesses

131

Every Walk’s a Hit: Making Page Walks Single-Access Cache Hits ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

gups rand. graph500
0

100

No
rm

. I
PC

 (%
) 50% LP

THP FPT FPT+NF

gups rand. graph500
0

100

200
100% LP

Figure 4: Impact of avoiding redundant page table entries for
large pages (FPT+NF vs. FPT) for 50% and 100% large pages.
Normalized to 0% large pages.

a naive page walker would need for all benchmarks except gups
and random access. Those two benchmarks are an exception, as
they exhibit a highly random access pattern across a large enough
virtual address range that the PWC is only able to skip one level
(one memory access) per page walk on average.

As a two-level flattened page table consists of a root level with
up to 218 page table entries, the L3 PWC can match the top 18
bits of the virtual address. A PWC hit will then skip the first level
of the flattened page table (the L4+L3 entry) and directly access
the flattened L2+L1 page table entry, resulting in a single memory
access for each TLB miss. Our evaluations (Section 7) confirm that
the flattened page table augmented with a PWC sees an average of
one memory access per page walk (Figure 10). It is worth noting
that merging the first two levels of the page table (L4+L3) may
make the PWC more effective as each PWC hit translates twice as
many index bits and fewer PWCs are required since there are fewer
levels, enabling each one to cache more entries.

When running many applications with small memory footprints,
the benefits from flattening may be smaller as the PWCs already
skip many of the page table accesses. In such cases, flattening may
not be as beneficial and may result in bloating (Section 3.2). How-
ever, cache prioritization (Section 5) will continue to be beneficial
whenever TLB pressure is high, either due to many small applica-
tions co-running with frequent context switches or simultaneous
multithreading, or fewer applications with very large page tables.

3.4 Supporting Large Data Pages
If the lower two levels (L2+L1) are flattened, then there is no way to
use an L2 entry to directly provide a 2MB translation. This requires
512 replicated translations in the L2+L1 node all pointing to the
same 2MB page.While this may be helpful for sparse accesses (since
it enables only two accesses for the page walk) it puts pressure on
the cache if many of those replicated entries are accessed.

Figure 4 shows the resulting loss in performance with flattening
(FPT, middle dark blue) compared to a traditional page table (THP,
left light blue) for two fragmentation scenarios: 50% large pages
(realistic [42]) and 100% (performance limit, but unrealistic). To
mitigate this, we take advantage of the flexibility to flatten different
parts of the page table differently. Specifically, we allocate/promote
2MB data pages in 1GB virtual address regions and mark those
regions to not have their L2 and L1 tables flattened (Figure 3 left,
bottom mapping). This allows allocations in the 1GB regions to
behave as L4+L3 flattened tables (Figure 3 center) while other re-
gions also have their L2+L1 levels flattened. Page walks to 4 KB
mappings in this region will require up to 3 memory accesses, but

2MB mappings will only require up to 2 accesses and no replicated
entries. With this optimization (FPT+NF in Figure 4), flattening
surpasses the baseline by providing the benefits of L4+L3 flattening
with efficient large page access.

The OS can decide how to flatten the page table, for example,
based on mapping statistics gathered for page promotion or hints
from the application. In our L4+L3 and L2+L1 flattened simulations,
we heuristically mark a 1GB region to not have L2+L1 flattened
if there are 32 or more 2MB pages in it, but this threshold can be
dynamically adjusted by the kernel. Applications with many 2MB
pages may benefit instead from flattening the L3+L2 levels (Figure 3,
right), enabling the PWC to skip most L4 accesses, providing single-
access page walks to 2MB pages and two accesses for 4 KB pages.

3.5 Accessing Recursively Mapped Page Tables
To manipulate page tables Linux uses a mapping of all physical
memory to a contiguous virtual address range in kernel space and
a software page table walk. However, Windows uses recursive
page tables where the page tables map themselves into their own
address space. This is done by having a special recursion entry
in the top-level (L4) node that points back to the node itself, and
using recursions through this node to prevent the page walker from
reaching the ordinary leaf node. As a result, the walk returns the
address of a the page table node where it stops, and not the normal
data translation/frame.

The degree of recursion can be controlled by the number of
index fields in the VA that are filled with the recursion entry index.
Recursive access to the page table for a 4-level table with the middle
two levels flattened (L4, L3+L2, L1), is shown in Figure 5 with a
normal translation of a data page to the left.

If the top 9 bits of the VA are the recursion index (Figure 5,
middle), the 3-step page walk will recurse once and step through
the top (L4) node twice: L4→ L4→ L3+L2. The final VA bits will
then return the address of the L1 page table node indexed from the
entry in the L3+L2 node. In a similar manner, if the top 18 bits of
the VA have the recursion index concatenated twice, then the page
walker will recurse twice (Figure 5, right), and step through the top
(L4) node three times: L4 → L4 → L4, returning the address of the
L3+L2 page table node indexed by the L4 node.

Since the address encoding is the same for data translations and
pointers to page table nodes, the same page walk can return either
data translations (with no recursions) or the addresses of the page
table nodes themselves (by adding recursions, which causes the
page walk to end earlier on a page table node). The more recursions,
the higher the node level returned, and the specific node is selected
by the remaining VA bits.

Traditional page walks terminate and return a large page trans-
lation when they encounter an entry marked as a large page (e.g.,
a 1 GB page is returned if marked at L3 or a 2MB if at L2). To make
recursive page table walks work with flattened page table nodes,
the walker is modified to recognize pointers to flattened page tables
as large page mappings (in addition to normal 2MB mappings)
while looking up L2 entries (Figure 5, right).

Another problem arises when the root page table node is a flat-
tened node. The page walker cannot simply use 18 bits of the VA
to index recursively into flattened nodes. For example, accessing

132

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Chang Hyun Park, Ilias Vougioukas, Andreas Sandberg, and David Black-Schaffer

Access Data Page

Offset

Data PageL4 L1
CR3

Flat
L2+L1
Flat
L3+L2

VA L4 L1L3 L2

Access Flat L3+L2 Table Page

2 MB Offset

R

Large
L3+L2 PTL4

CR3

L4_i L3_i L2VA L4 L3

2 Recursions

L4_i L3 L2 L1VA

Flat
L2+L1
Flat
L3+L2

Offset

L1 PT

L4
CR3

Access L1 Table Page

R

L4

1 Recursion

L3 L2 L1

Figure 5: Recursive mappings used to access page tables in a L4, L3+L2, L1 page table organization.

Offset

Flat
L4+L3

Problem: Accessing Flattened PT

VA

R

L4 L3

Large (2 MB)
L4+L3 PT

Unable to address
after first 4 KB

First 4 KB accessible

12 bits (4KB)

Offset

Flat
L4+L3

Problem: Accessing 4 KB PT

R

L4 L3

L2 PT L1 PT

Cannot recurse to
access L1 page table

Flat
L4+L3

R

L3* Sub-table
(4 KB)

Point directly
to the sub-table

of interest

Solution

L4 L3 L2

Flat
L4+L3

R
L3*

L2

OffsetL1

L1 PT

L2 L1

L2 L1

3 recursion2 recursion

1 recursion

Solution
1 recursion

R1

R1 R2 R1 R2 R3

R1

L3*

OffsetL4 L3 L2 L1

L3*
L4*

R
&L3*R1

R2 R3

Figure 6: Recursion problems with flattened L4+L3 nodes and
how a glue sub-table (L4*) acts as a traditional unflattened
L4 to enable recursion.

1st 4 KB L3* 2nd 4 KB L3* 3rd 4 KB L3* … 511th 4 KB L3* 512th 4 KB L4*

PTE 1 PTE 2 PTE 3 … PTE 511 PTE 512

Flat L4+L3 2 MB Node

The glue table, or L4*

Figure 7: A 4KB glue sub-table, L4*, points back to all the
4KB, L3*, sub-tables of the flattened L4+L3 2MB table. Note
that the pointers treat the L3* sub-tables as traditional 4KB
tables.

the L4+L3 node in a flattened L4+L3, L2, L1 page table (Figure 6)
requires two recursions of 18 bits each for the L4+L3 2MB node
(top left), leaving insufficient bits for the final indexing of the node.
Similarly, it is not possible to reach the L1 node in this situation
(bottom left), as even a single recursion will overshoot in address
bits.

To address this, we propose using a 4 KB region within the flat-
tened L4+L3 page table as a glue sub-table. This glue table serves
two purpose: First, it makes it possible to use a page table with a
flattened L4+L3 on systems or devices that do not natively support
flattened page tables by accessing the page table through the glue
table. Second, it enables recursion in systems with flattened L4+L3
tables without any corner cases in the architecture.

The insight behind this is that a flattened L4+L3 table can be
thought of as a series of concatenated L3 sub-tables (Figure 7, L3* in
Figure 6). To support recursion on flattened L4+L3 tables, we embed
a traditional L4 table as one of the L3* sub-tables in the flattened
L4+L3 table. We denote this specific L3* sub-table as L4*. This sub-
table contains pointers to all of the L3* sub-tables (including itself)
within the flattened L4+L3 table. This is illustrated in Figure 7 where
the embedded sub-table is highlighted in green at the top, and the
contents of the embedded sub-table is shown at the bottom. This
table corresponds to the self-referencing entry in a traditional L4
table and occupies a single sub-page (the 512th sub-table in the
figure, real systems usually select a random index at boot time)
of the 2MB L4+L3 table. As we are using a sub-table within the
2MB L4+L3 table, we do not require an additional 4 KB allocation
for the L4*. On recursive page table walks the upper 9 bits of the
18-bit index accesses the L4* sub-table of the flattened L4+L3. This
triggers a recursion and the lower 9 bits select an entry in the L4*,
which holds an address to a L3* sub-table of the flat L4+L3 table,
providing recursion back to a sub-table of the flattened L4+L3 table.
If multiple recursions are required, the lower 9 bits can point to the
PTE entry that points to the L4* and the next recursive walks will
access the L4* 4 KB table.

Figure 6 shows an example of recursion on a flattened L4+L3
table with a glue table. The first case (top right) illustrates how
an arbitrary entry in the L4+L3 table can be accessed. To access
an entry in the L4+L3 table, the generated virtual address needs
to trigger three recursions. The first step of the walk performs
two recursions (R1, R2) since it uses 18 bits of address to access
an entry within the glue table. The top 9-bits of the index (the L4
bits) trigger the first recursion (R1) by selecting the glue table (or
L4*). The lower bits (the L3 bits) select the recursion entry within
the glue table which corresponds to the second recursion (R2). We
conceptually describe R1 and R2 as two recursions, however, they
are actually single memory accesses into a PTE in the L4+L3 node.
The next recursion (R3) uses the L2 bits to index into the L4* table to
accesses the recursion entry again. The final step of the walk uses
the L1 bits to access an entry within the glue table which contains a
pointer to an L3* sub-table (denoted as &L3*). The second example
(bottom right) shows how an L1 table can be accessed using a single
recursion. In this case, the L4 bits select the glue-table (R1) and the
L3 bits select an entry within the glue table. The page table walker
then uses the L2 bits to index into the L3* table, the L1 bits to index
into the L2 table, and the offset bits to access the L1 table.

133

Every Walk’s a Hit: Making Page Walks Single-Access Cache Hits ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

gL4hL4 hL3 hL2 hL1

DatahL4 hL3 hL2 hL1

gL3hL4 hL3 hL2 hL1

gL2hL4 hL3 hL2 hL1

gL1hL4 hL3 hL2 hL1

❷

❶

vPWC PWC

(a) 2-D page table

Flattened
g(L4+L3)

Flattened
h(L4+L3)

Flattened
h(L2+L1)

Flattened
g(L2+L1)

Flattened
h(L4+L3)

Flattened
h(L2+L1)

Flattened
h(L4+L3)

Flattened
h(L2+L1) Data

❸

PWCvPWC

(b) Flattened host and guest

Figure 8: Flattening in virtualized 2-D page table walks. The
PWC and vPWC skip stages of the virtualized walks.

3.6 Implications for Five-Level Page Tables
Unless programs spread their data across the full address space,
5-level page tables [31] will behave similarly to 4-level page ta-
bles with the PWC caching translations for essentially all 5th-level
translations. However, their larger address space opens up more
possibilities for flattening. In particular, merging the L5+L4 levels
and the L3+L2 levels and directly translating 2MB pages or using
an L1 level when 4 KB pages are needed would be quite attractive. It
might even be desirable to use a 1GB page by merging three levels,
if the kernel can reliably allocate such regions.

4 FLATTENING AND VIRTUALIZATION
With virtualization, guests use a set of page tables to map from the
guest virtual address (gVA) to the guest physical address (gPA), and
the hypervisor uses a second set of page tables to map from the
guest physical address to the host physical address (hPA). A guest
translation therefore needs a two-dimensional page walk (Figure 8a)
in which each of the four guest page table level access first requires
its own four-access host page table walk, and a final four-access
host page table walk is required to translate the final guest physical
address, incurring a total of 24 memory accesses. As there are two
page tables involved, there are three possible combinations of page
table flattening. Either the host or guest page tables can be flattened
(14 accesses), or both (8 accesses), can be flattened. (See Figure 8b.)

4.1 Effective Memory Accesses per Page Walk
Although virtualization naively incurs 24 memory accesses per
walk, in practice many of these accesses are eliminated by a com-
bination of three techniques (Figure 8a): PWCs, large pages, and
host translations in the TLB. Figure 8a shows how the PWC skips
levels of the guest (5th column, skip downwards) walk and a vPWC
skips them for the host walk (applicable on all five rows). Our eval-
uations show that this reduces the number of accesses to as low as
3 to 4.8, with an average of 4.4. Even the two most random access
applications, GUPS and random access, require only 9.6 and 9.4
memory accesses.

Hypervisors also try to map the guest physical pages to host
physical pages in large pages to make host translations more effi-
cient [1, 10]. Using large pages comes with the benefit of removing
the last level of the conventional four-level page table. In a 2-D
page table, a 2MB guest mapping can remove a row of memory

accesses (➊ in Figure 8a). Large page mappings for the gPA to hPA
mapping remove columns (➋).

With host and guest page tables flattened, the number of accesses
per page walk is reduced to 8, and, with the help of the PWC, this
comes down to 2.8 in practice, as shown by the box (➌ in Figure 8b).
The guest PWC allows the page walk to skip the flattened g(L4+L3),
and directly access the flattened g(L2+L1). To access the g(L2+L1),
the host page table is traversed, and here the vPWC skips the
flattened h(L4+L3), and directly accesses the flattened h(L2+L1).
After the gPA of the data is resolved, the host page table is traversed
once more for the actual data gPA to hPA translation, resulting in
another walk, where the vPWC skips the h(L4+L3), enabling a single
access final translation. Finally, after 2.8 accesses, the actual data
can be accessed. Thus, flattening both guest and host page tables
allows reducing the number of memory accesses from on average
4.4 down to 2.8.

5 CACHE PRIORITIZATION
The other half of our approach is to reduce the latency (and energy)
of each page table access by increasing the chances that it will be
a cache hit. We do so by biasing the cache replacement policy to
keep page table entries when an application is experiencing high
TLB miss rates. Unlike CSALT [35], which biases the cache to store
TLB entries to support their DRAM-TLB-cache design, we bias the
cache to store page table entries for the existing page table walker.

Biasing the replacement policy to favor page table entries means
evicting more data, but we find that applications with high TLB
miss rates also exhibit high data miss rates (L2 and L3 data miss
ratios of 95% and 80%). This, combined with the page table access
being on the critical path to the data access, suggests that allocating
more cache space to the (much smaller) page table over the data
itself is likely to be more beneficial than caching the data3.

As data sets grow in the future, the likelihood of hitting in the
cache will always remain higher for the page table than for the data
for applications with limited locality simply due to the disparity
in size between the two. Concretely, an application with 8GB of
densely allocated memory requires 221 4 KB pages represented by
8 B each, for a total of 16MB of space. In the conventional four-
level page table, each intermediate level is 1/512 the size of the
previous one, resulting in only 32 KB for the L2 level, which is likely
to be skipped by the PWC. From this analysis we see that an 8GB
memory workload could fit all leaf page table entries into a 16MB
cache, and is thus practical to cache in today’s systems. Even with
a random access pattern, caching even a portion of the page table
entries would deliver a significant benefit. Future, larger workloads
might even benefit from prioritizing among different levels of the
page table itself, although we have not explored this.

In addition to our simulations, we explored the potential of
preferentially caching page tables on current system by creating a
thread that runs on another core and periodically touches the page
table of a target application to keep it in the shared LLC. We ran
this thread together with graph500 (scale 24) on an Intel i7-9700
with a shared 12MB LLC, and found a 5% performance increase
from keeping the entire page table in the LLC (miss ratio of 0% for

3MASK [13] identified that the opposite approach of prioritizing data over page table
entries is better for latency-insensitive GPUs.

134

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Chang Hyun Park, Ilias Vougioukas, Andreas Sandberg, and David Black-Schaffer

the page table thread). While this experiment both uses extra LLC
bandwidth and does not bring the page table into the target’s private
L2, unlike our proposed and simulated design, it does demonstrate
that preferentially caching page tables is a promising approach. This
leads to our conclusion that if the program accesses the memory in
a way that does not make good use of the TLB and the caches for
data, then we would be better off prioritizing page table entries in
the caches.

6 IMPLEMENTATION
6.1 Hardware Changes
Flattened page tables require augmenting the hardware page table
walkers to be aware of the size of the page used at each level of
the page table. This requires two additional bits (for 4 KB, 2MB,
and 1GB pages, or one for just 4 KB and 2MB) in the CR3/TTBR
register (for the root node) and at each entry in the page table,
possibly in the currently unused bits. These bits indicate the size
of the page at the next level of the page table, and are needed to
determine how many bits of the virtual address to use as index bits
in the walk. As page table nodes are aligned, using flattened page
tables frees up 9 or 18 bits (2MB or 1GB nodes) in the page table
entries that point to flattened page table nodes, leading to more
available bits. Similar small changes are required to the PWC, but
there is the potential to use storage more effectively if there are
fewer levels in the page table. Overall these changes are minor and
incur essentially no hardware overhead.

Cache prioritization requires detecting phases of high cache
and TLB miss and enforcing the prioritization. Detection is easily
accomplished using existing hardware counters. Prioritization can
be accomplished with a range of techniques. For example, existing
cache partitioning technique (such as way-partitioning) can allow
the OS to pre-load page table entries into part of the cache that
will not contend with the application’s own data. Alternatively,
a per-cacheline tag bit can indicate if the entry is a page table
and then bias the replacement policy away from such lines. The
cost of such hardware is less than 0.2% of the cache size, and is
already present in server-class processors that support per-context
cache partitioning [11, 32]. Indeed, Arm’s MPAM already stores a
partition ID that can be used to differentiate processes or even I/D
cache lines [11]. We use this approach for prioritization in the L2
and LLC during phases of high TLB miss rates: when choosing a
victim for replacement, 99% of the time we choose to evict data over
page table entries. If there are no data entries in the set, or in the
other 1% of the evictions, we evict the LRU entry. We empirically
found that this ratio works well.

To limit impact on co-runners in shared caches, prioritization
can occur within a context’s (core/process) allocation by using
identifiers in the tags [11, 32]. For ourmulticore simulationswe used
this approach to prevent one process’ data from evicting another’s
page table.

As flattened page tables require only trivial hardware changes,
the energy benefits will be proportional to the reduction in memory
system accesses and execution times.

6.2 Software Changes
We have a working operating system prototype based on Linux
5.8.13 running on an industrial Armv8 functional simulator and on
existing HW by adding an additional shim level before the large
page tables. The change to the kernel is small: +614/-109 lines. Page
tables are automatically flattened if a sufficiently large allocation
can be provided by the kernel. Our implementation flattens L3+L2
(Figure 3, right). L5+L4 flattening could be added with only minimal
changes. We have not implemented dynamical flattening of page ta-
ble levels after allocation. However, this would be straight-forward
to implement by allocating a large page and copying the page table
entries of the lower nodes (the L2 child nodes of the L3 node that
is being flattened into an L3+L2) into the new flattened node. The
upper node (L4) entry can then be updated to point to the flattened
node.

Most Linux’s page table management is shared between archi-
tectures. The kernel internally assumes that all architectures imple-
ment a 5-level radix tree where the highest level, L5 (PGD using
Linux’s terminology), is always implemented. This avoids special
cases since unimplemented levels can be folded into the parent
level using a virtual entry that points back to an entry in the parent
table. For example, in a system with a three level page table, the
kernel would implement L5 (PGD), L2 (PMD), and L1 (PTE), with L3
(PUD) and L4 (P4D) folded into the L5 table. Internally, the kernel
treats L3 and L4 as having a single virtual entry (effectively the
corresponding L5 entry) and no storage.

Using this existing support, we can readily implement support
for flattened L2+L3 tables. We simply fold the L3 table, request 2MB
instead of 4 KB when allocating an L2 table, and change the macros
that define the bit ranges used to index into the tables. However,
this approach does not work in practice since it makes 2MB pages a
hard requirement, which could lead to a situation where fragmented
systems fail to allocate page table node even when there is free
memory.

To support a graceful fallback to 4KB table nodes, we needed
to be able to selectively fold the L2 and L3 tables per sub-tree
of the page table. The kernel currently only supports folding an
entire level across a process’ entire address space. For our our
prototype, we changed the signature of a handful of functions to
add a mechanism to determine if a level needs to be folded based on
the state of the parent entry. Overall, this change is small (roughly
100 lines of shared code a few tens of lines per architecture) and
mostly mechanical.

With selective sub-tree folding in place, we can allocate large
L3 tables. If we succeed in allocating a 2MB page for a flattened
L3+L2 table, we treat the table as an L2 table and fold the L3 table.
The L4 entry is configured to point to the new L2 node and a bit in
the entry is set to indicate that the next node has been flattened. If
the flattened L3+L2 table allocation fails, we allocate normal 4 KB
L3 and L2 tables.

We stress-tested our prototype kernel on a server system with
128 hardware threads by building a Linux kernel with 100 concur-
rent processes. Since the hardware does not support flattened tables,
we allocate and manage the flattened table in the kernel, but inject a
shim table between the L4 table and the flattened L3+L2 table to be
compatible with the existing architecture. We found that 0.5% (20

135

Every Walk’s a Hit: Making Page Walks Single-Access Cache Hits ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

Table 1: Server simulation configurations

Processor 2GHz Out-of-order x86 Processor
L1 I/D Cache 4-cycle, 32 KB, 8-way, 64 B block
L2 Cache 12-cycle, 256 KB, 8-way, 64 B block
L3 Cache 42-cycle, 16MB, 8-way, 64 B block
Memory DDR4-2400, 4 channels

L1 TLB (Parallel lookup) 4 KB: 1-cycle, 64-entry , 4-way
2MB: 1-cycle, 32-entry, 4-way

L2 TLB 4KB/2MB: 9-cycle, 1 536-entry, 12-way

PWC (Parallel lookup)
L4: 1-cycle, 4-entry FA
L3: 1-cycle, 4-entry FA
L2: 1-cycle, 24-entry FA

Nested TLB [17] 1-cycle 16-entry FA

out of 3464 compiler invocations) failed at least one of the two 2MB
allocations needed for the flattened page table on a system with
6% memory oversubscription (500MB swap with 8GB RAM). This
increased to 12% failures on a system with 50% oversubscription.
When a 2MB allocation failed, the prototype used our fall-back
path with traditional 4 KB tables.

7 EVALUATION
We implemented our proposal in the gem5 [20] simulator (Ta-
ble 1). We model the TLB [30] and the Paging Structure Caches (our
PWC) [29, 51] of the Intel Skylake microarchitecture. Unfortunately,
the page walker cache provided in gem5 is modeled as a cache with
64 B-lines, which does not accurately represent either page table
caches nor translation caches [14]. We implemented our own PWC,
which sends misses to the L1 data cache [32], as in Intel processors.
Our flattened page tables use the L2 PSC and we model a vPSC for
the host page table under virtualization.

This work requires comparing two different page table organi-
zations. To keep all other aspects of the simulation state the same,
such as data layout in memory and kernel interrupts, we use system-
call emulation (SE) mode to vary the page table organization, while
keeping all other states identical. SE is sufficient as we do not study
the effect of changes in memory mapping or the page table dur-
ing the runtime of the program, and focus our evaluation on the
program execution itself. The gem5 SE mode normally does not
model a page table walker nor a page table in the form of a radix
tree. We included page table walks by constructing the page table
based on the simulator VA to PA mappings, and having the page
table walker appropriately access each level through the caches.

We evaluate three large page fragmentation scenarios [34, 41]:
0% (all 4 KB pages; worst case for page walks), 50% (typical real-
world [42, 54]), and 100% (all large pages; best performance but
unrealistic). For the 50% scenario, we allocate large pages for the
lower-half of the address space to simulate an OS that runs out of
free large pages. Mosalloc [4] proposed another layout that uses
random windows of contiguous memory. The authors found that
this can sometimes result in behaviors similar to either 4 KB allo-
cations (our 0% scenario) or 2MB allocations (our 100% scenario).
Thus, we used the lower-half of the address space in large pages
scheme.

We evaluate our proposals on benchmarks that stress the TLB:
GraphBIG [40] (LDBC-1000k dataset, 6.6 GB of memory usage) and
graph500 (scale 24, 5.4 GB); benchmarks with significant TLBmisses

from biobench [7] and SPECCPU 2006 [28]; GUPS (𝑁 = 30, 8 GB);
large linear classification (liblinear) [24] (inputs: url_combined and
HIGGS); a hashjoin microbenchmark [3], and the XSBench [50]. As
large in-memory databases, such as memcached, and very large
graphs exhibit random access patterns, we also include amicrobench-
mark that represents such random access behavior.

7.1 Non-virtualized Execution
Figure 9 shows the performance of our approach and those of
ASAP [36], Elastic Cuckoo Hashing [49], and CSALT [35]. The per-
formance numbers are presented relative to a baseline system with
a 4-level page table and Intel-style PWCs. We plot results for three
fragmentation scenarios stacked to show the change as the percent
of large pages increases: bottom (0% large pages), middle (50% large
pages, realistic [42]), and top (100% large pages, best performance,
but unrealistic). Performance is normalized to the baseline configu-
ration with 0% large pages (horizontal black line/dark gray bar), and
the effect of 50% and 100% large pages can be seen on the baseline
system in the gray bar in the middle.

We see two trends in the results: First, for the 0% (bottom) and
50% (middle) large page cases, flattening the page table (FPT), pri-
oritizing page table entries in the cache (PTP), and the combination
(FPT+PTP) contribute to increasing performance improvements
beyond the state-of-the-art (blue bars increasing to the right). Sec-
ond, as the fragmentation decreases (stacked from bottom to top),
the impact of flattening and prioritization also decreases. This is
because the TLB misses are much less frequent (less opportunity to
reduce latency) and the page table size itself is drastically smaller
(less need to preferentially cache it). Interestingly, the combination
(FTP+PTP) is almost as effective as moving from 0% to 50% large
pages (9.2% vs. 11.0%). For the detailed analysis below we look at
the 0% large page scenario as flattening and prioritization have the
largest potential4. Figure 10 shows that the flattened page table
together with the PWC results in single-access page walks for all
workloads. Overall, flattening the page table for 4 KB pages shows a
geometric mean performance improvement of 2.3% (solid light blue
bar) vs. 1.7% for ASAP (solid dark green bar) and a net performance
loss for ECH (solid medium green bar).

Prioritizing page table entries in the L2 and L3 caches on the
baseline improves performance by 6.8%. This does increase data
misses slightly (L2: +4.7 percentage points) in exchange for far
fewer page walk misses (L2: -36.2 percentage points). Figure 10
(bottom) shows that this prioritization significantly reduces page
walk latency from an average 50.9 cycles per walk (baseline) down
to 33.0 (prioritizing). Flattening and prioritizing together results in
29.1 cycles per walk.

ECH shows lower performance than the baseline as it requires
three (4 KB pages) or four (mixed 4KB/2MB pages) concurrent
memory accesses vs. a single memory access with flattening. CSALT
provides little benefit for the 0% large page scenario. We believe
this is due to CSALT having been designed and evaluated only with
large pages, which makes it poorly optimized for the much larger
page tables from our 0% and 50% scenarios, and their assumption of

4We expect similar effects for 2MB pages in the future if TLB reach does not increase
as fast as data sizes.

136

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Chang Hyun Park, Ilias Vougioukas, Andreas Sandberg, and David Black-Schaffer

bfs cc dc dfs gr.color. hashjoin kcore liblinear mcf mummer omnetpp pr sssp tc xsbench Geomean

90

100

110

120

130

No
rm

al
ize

d
IP

C
(%

)

ASAP ECH CSALT baseline FPT PTP FPT+PTP 0% LPs 50% LPs 100% LPs

graph500 gups liblinear_H rand. tiger
100

150

200

Figure 9: Performance of flattening (FPT), cache prioritization (PTP), both combined (FTP+PTP), and the related work (ASAP,
ECH, CSALT). Three fragmentation scenarios are shown stacked: 0% large pages (bottom, all 4KB pages), 50% large pages
(middle, realistic), and 100% large pages (top, unrealistic for actual systems). Normalized to the PWC-equipped baseline (solid
line and dark middle bar) with 0% large pages.

0

1

2

3
Memory requests per page walk

base FPT

bf
s cc dc df
s

gr
.c

ol
or

.
gr

ap
h5

00
gu

ps
ha

sh
jo

in
kc

or
e

lib
lin

ea
r

lib
lin

ea
r_

H
m

cf
m

um
m

er
om

ne
tp

p pr
ra

nd
om ss
sp tc

tig
er

xs
be

nc
h

0

50

100

Page walk latency (cycles)
base
FPT
PTP
PTP + FPT

Figure 10: Memory accesses and latency per page walk across
a traditional 4-level page table (baseline), flattened (FPT), and
cache prioritization (PTP), all with PWCs.

very frequent (every 10ms) context switches, which would make a
PWC less effective.

Changing PWC size resulted in a performance impact of -1.5%
to +2.4%, when sweeping the L3 PWC entries from 1 to 16 (baseline
4) for the most sensitive benchmark, GUPS. In comparison, flat-
tening gave a benefit of 8.9% as it benefits from a single memory
access, instead of the 2 memory access from a L3 PWC hit. Achiev-
ing a similar benefit to flattening (single memory access) would
require increasing the L2 PWC size to approximately 4096 entries.
The larger 16-entry L3 PWC provided +2.9% on top of our cache
prioritization.

With larger data sets the ratio of page table size to LLC size
increases, potentially making preferential caching less effective.
To evaluate this, we increased the page table to LLC ratio by 2x,
4x, 8x, and 16x over the previously presented results. We shrunk
the LLC size proportionally to evaluate higher page table to LLC
ratios. This experiment does not take into account the increased
capacity pressure of the larger workload on the L1 and L2 caches,
however, as the workloads are already far surpassing the L1 and
L2 cache sizes, we believe the effects would be similar. Even with
these increases, we saw similar performance benefits of preferential
caching: geometric mean improvements of 6.8% (baseline), 5.9% (2x),

mix 1 mix 2 mix 3 mix 4 mix 5 mix 6 mix 7 mix 8 G.mean

100

125

150

175

No
rm

al
ize

d
W

ei
gh

te
d

Sp
ee

du
p(

%
)

ASAP ECH CSALT Base FPT PTP FPT+PTP

0% LPs 50% LPs 100% LPs

Figure 11: Multicore performance. Mean for all 20 mixes.

5.6% (4x), 6.5% (8x), and 7.0% (16x). In the 16x page table to LLC
ratio, we are caching 6.3% of the page table while still maintaining
the benefit of cache prioritization. This scenario represents a 128GB
workload running on a 16MB LLC. Based on these results we expect
cache prioritization to provide benefit up to and possibly above
the 128GB point as we did not see any trend of the performance
dropping off.

However, for systems with vastly more memory (e.g., 4 TB or
0.2% of the page table cached in a 16MB LLC), page table entries
were found to suffer capacity misses in the LLC [19]. We cannot
predict the benefit of cache prioritization for such systems and it is
possible that cache prioritization may not work in such capacity
constrained scenarios. If large pages are widely available in these
systems, mapping the 4 TB region with 2MB large pages will result
in a 16MB page table, allowing us to efficiently keep these page
table entries in the cache through prioritization.

To summarize, for 0% large pages, flattening the page table im-
proved performance by 2.3% over the baseline. Prioritizing caching
of the page table resulted in a 6.8% improvement, while the combi-
nation delivered 9.2%, which is significantly greater than the state
of the art (bottom bars in Figure 9: ASAP 1.7%, ECH -5.9%, CSALT
0.3%). However, as the proportion of large pages increases, the rela-
tive improvement decreases. For the 50% large page scenario, the
combination of flattening and prioritization delivered a 5.8 percent-
age point improvement vs. ASAP 1.2, ECH -3.2, CSALT 0.7 (middle
bars in Figure 9).

Multicore. To evaluate the effect on shared caches and the mem-
ory hierarchy, we evaluated flattening and prioritizing with multi-
programmed workloads (32MB shared L3, 4 cores with private L1s
and L2s). We evaluated a total of 20 workloads: 11 homogeneous
and 9 heterogeneous. Figure 11 shows the normalized weighted

137

Every Walk’s a Hit: Making Page Walks Single-Access Cache Hits ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

bfs cc dc dfs gr.color. hashjoin kcore liblinear mcf mummer omnetpp pr sssp tc xsbench Geomean

100

120

140

No
rm

al
ize

d
IP

C
(%

)

Base-2D HF GF GF+HF Base+PTP HF+PTP GF+PTP GF+HF+PTP 0% LPs 50% LPs 100% LPs

graph500 gups liblinear_H rand. tiger
100

150

200

250

Figure 12: IPC comparison in virtualized environments of various combinations of flattening the page table for the host (HF)
and guest (GF) and both (HF+GF), with (blue) and without (green) cache prioritization (PTP).

Table 2: Benchmark mixes for the multicore evaluation.

Mix Benchmarks Mix Benchmarks

1 dc×4 2 liblinear_H×4
3 rand×2, dc×2 4 rand×2, hashjoin×2
5 hashjoin×2, mummer×2 6 liblinear×2, xsbench×2
7 tiger×2, dfs, bfs 8 rand, liblinear, dc, cc

speedup for 8 mixes (Table 2) and the geometric mean of all 20. The
first two entries show that homogeneous mixes behave similarly to
the individual benchmarks in Figure 9. This was consistent across all
11 homogeneous mixes. The heterogeneous workloads show a sim-
ilar performance improvement trend to the individual benchmarks:
Flattening and prioritizing each introduce performance improve-
ments, and work together resulting in an average of 2.2%, 9.2%
and 11.5% improvement, respectively, for the 0% LP scenario. The
improvements are 1.4, 8.6 and 10.3 percentage points, respectively,
for the 50%, and 0.2, 0.7 and 0.8 percentage points, respectively for
the 100% scenario.

7.2 Virtualized Executions
The performance benefits for virtualized systems are shown in
Figure 12. The green bars show the effects of flattening the host page
tables (HF), the guest page tables (GF), or both (GF+HF). The blue
bars include cache prioritization. The baseline (Base-2D, leftmost)
is a virtualized system with the 2D 4-level page table, which naively
incurs up to 24 accesses per page walk, but, because we include two
sets of PWCs for the guest and the host and a nested TLB [17] to
hold host translations, the average number of accesses is only 4.4.

Flattening in virtualized environments delivered a larger perfor-
mance improvement than native environments. Flattening the host
page table alone resulted in a 1.1% performance improvement, while
flattening the guest page table alone delivered 4.9% improvement.

To understand the difference, consider Graph500, which which
requires 11MB of guest and 22 KB of corresponding host page tables
for its 5.4 GB gVA. The Nested TLB [17] and the vPWC (host PWC)
work together to efficiently cache the small host translations (22 KB)
for the guest page tables. As a result, the host translations for the
guest page table accesses are effectively single access, even for the
baseline 2D walks. This means there is less benefit for flattening
the host page table for the guest page table accesses. Indeed, most
of the benefit for host flattening comes from the final host data
address translation. Guest flattening, however, allows flattening

ASAP CSALT FPT PTP FPT+PTP
90

95

100

105

110

No
rm

al
ize

d
en

er
gy

 (%
)

L1D L2 L3 Cache DRAM

ECH
0

50

100

150

GF+HF GF+HF+PTP
80

85

90

95

100

Figure 13: Dynamic energy consumption of the cache hier-
archy and DRAM for data and page walks for native (left,
center) and virtualized (right) executions. Normalized to re-
spective baselines.

the 11MB page table, resulting in fewer guest accesses (which also
leads to fewer host table walks).

Finally, flattening both page tables is the most effective. Flat-
tening both host and guest page tables delivered the largest per-
formance improvement of 7.1%. Adding page table prioritization
in the cache, increased this significantly to 7.5%, 11.6%, and 14.0%
performance improvements for flattening host, guest, and both,
respectively. We found that page table prioritization in the cache
consistently provided a 6.1 to 6.9 percentage point improvement,
which is similar to the native results. The effects of large pages are
similar to the non-virtualized executions.

7.3 Dynamic Energy
We present dynamic energy normalized to the baseline in Figure 13
for the 0% LP scenario. The cache energy is comprised of the L1D,
L2 and L3 modeled with the CACTI [39] at 22nm. We include both
data and page table walks. For DRAM, we report relative off-chip
accesses.

ASAP which issues prefetches into the cache hierarchy for the
lower two levels needs to re-access the lower two levels resulting in
higher L1D accesses. CSALT does reduce off-chip DRAM accesses
by 2.0% but increases the L3 access 5% resulting in 2.7% higher
cache energy consumption. ECH issues three accesses per walk
for 4 KB pages resulting in higher cache (32%) and memory (14%)
energy consumption. This is a different behavior from the baseline,
ASAP, CSALT and our work, all of which benefit from fewer page
walk accesses due to the PWC.

Flattening reduces the number of memory accesses to the cache
hierarchy (-2.8%). Cache prioritization increases L2 hits and reduces
accesses to the L3 and the DRAM, reducing cache hierarchy energy

138

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Chang Hyun Park, Ilias Vougioukas, Andreas Sandberg, and David Black-Schaffer

Table 3: Mobile-core simulation configuration.

Processor 3GHz Out-of-order Armv8 Processor
Caches L1 I/D: 32 KB 4w, L2: 512 KB 8w, L3: 2MB 16w
Memory 90 ns, 48GB/s

L1 TLB I: 32-entry FA, D: 48-entry FA

L2 TLB/PWC 4KB, full translations: 1 536-entry 6w
1GB, 2MB, partial & full translations: 256-entry 4w

iter 1 angularjs

iter 1 backbonejs
iter 1 flight

iter 1 vanillajs

iter 5 angularjs

iter 5 backbonejs
iter 5 flight

iter 5 vanillajs
Iteration 1

Iteration 5
1.00
1.02
1.04
1.06
1.08

No
rm

al
ize

d
IP

C L3+L2 L4+L3 L2+L1 L4+L3, L2+L1

Figure 14: Performance of Speedometer 2.0 in a virtualized
system normalized to baseline 2-D page table.

(-2.5%) and DRAM accesses (-4.6%). Finally the combination of both
results in a dynamic energy reduction of 5.1% and 4.7%, for cache
and DRAM, respectively. We see a similar trend in virtualization
with flattening both guest and host table reducing cache energy
by 6.7% and adding prioritization resulting in 8.7% cache and 4.7%
DRAM energy saving.

7.4 Case Study: Flattening for Mobile Systems
We evaluated flattening alone on a production industrial simulator
used for next-generation mobile core exploration, configured as a
high-end mobile device (Table 3). We used the Speedometer 2.0 [2]
benchmark, which tests common browser operations such as DOM
APIs, JavaScript, CSS resolution, and layout. It is a good represen-
tation of real-world mobile system performance, including JITing
across iterations (e.g., iteration 1 executes 9.5% more instructions
than iteration 5). The system is based on a standard AOSP 10.0
distribution which does not use transparent huge pages. We use
virtualization, as future mobile systems are expected to use pKVM
for increased security [22].

Figure 14 shows the performance gains for a range of flattening
options. The improvement is largest for flattening both L4+L3 and
L2+L1 (dark blue bars, 3.8% and 4.3% for iterations 1 and 5 respec-
tively), which is consistent with our earlier server results. Overall,
flattening closer to the leaf nodes delivers the largest benefit, as
they make up the majority of the nodes and are least likely to be
cached, particularly under virtualization.

7.5 Flattening Other Levels
We have also simulated flattening the L3+L2 layer, which is by
design beneficial for 2MB data mappings as discussed in Section 3.4.
For L3+L2 flattening, our results show a 0.2, 0.3, 0.1 percentage point
benefit over the baseline for 0%, 50% and 100% large page scenarios,
respectively. The improvements for virtualization (flattening both
host and guest) is 0.7, 1.0, and 1.2 percentage points for the 0%,
50% and 100% large page scenarios. Finally, for the 100% large page
scenario, we found that L2+L3 flattening outperformed L4+L3 and

L2+L1 flattening by 0.3 and 0.8 percentage points, for native and
virtualized executions. These results are consistent with what we
saw for the mobile system (Figure 14).

8 CONCLUSION
In this work we explored two complementary techniques for reduc-
ing the impact of page walks: reducing the number of accesses by
flattening the page table and reducing the latency of the accesses
by preferentially caching page table entries. We evaluated server
and mobile systems across a wide range of benchmarks with both
academic and industrial simulators.

We show thatmodern PWCs result in little impact fromflattening
for non-fragmented and non-virtualized systems, but that with the
increased page table sizes of realistically fragmented systems and
complexity of virtualized page walks, flattening provides significant
benefit. Further, we see that preferentially caching page table entries
during periods of high TLB miss rates provides significant benefit
in all scenarios, as high TLB miss rates are strongly correlated with
high data cache miss rates, and the page table is sufficiently smaller
than the data that it is far more likely to see reuse through the cache
hierarchy. We further identify the challenges of self-referencing
page tables and provide a practical solution.

Combined, flattening and prioritization allow us to serve the vast
majority of page walks with a single cache hit, delivering significant
performance (+14.0%, +7.2% with realistic large page fragmentation)
and dynamic energy (-8.7% cache and -4.7% DRAM) benefits beat-
ing the state-of-the-art. Implementation requires only very small
changes to the operating system (as we leverage existing large
page support and provide a graceful fallback path) and hardware
(as we use existing performance counters and cache partitioning
techniques, or need one bit per tag). If main memory growth con-
tinues to outpace TLB growth, we expect that these techniques will
become increasingly important.

ACKNOWLEDGMENTS
The authors would like to thank the shepherd, Jayneel Gandhi, and
the anonymous reviewers of this paper. We would also like to thank
Probir Sarkar, and Abhilash V. Varier, and Richard Grisenthwaite
from Arm for valuable insights and feedback.

This work was supported by the Knut and Alice Wallenberg
Foundation through the Wallenberg Academy Fellows Program
(grant No 2015.0153), the European Research Council (ERC) un-
der the European Union’s Horizon 2020 research and innovation
program (grant No 715283), and the NRF of Korea through the
Postdoctoral Fellowship Program (NRF-2020R1A6A3A03037317).
The computations and data handling were enabled by resources
provided by the Swedish National Infrastructure for Computing
(SNIC) at NSC (2021/22-435) and UPPMAX (2021/23-626) partially
funded by the Swedish Research Council through grant agreement
no. 2018-05973.

REFERENCES
[1] 2015. Huge Page Support - Xen. https://wiki.xenproject.org/wiki/Huge_Page_

Support.
[2] 2018. https://browserbench.org/Speedometer2.0/.
[3] Reto Achermann, Ashish Panwar, Abhishek Bhattacharjee, Timothy Roscoe,

and Jayneel Gandhi. 2020. Mitosis: Transparently Self-Replicating Page-Tables
for Large-Memory Machines. In Proc. Internationla Conference on Architectural

139

https://wiki.xenproject.org/wiki/Huge_Page_Support
https://wiki.xenproject.org/wiki/Huge_Page_Support
https://browserbench.org/Speedometer2.0/

Every Walk’s a Hit: Making Page Walks Single-Access Cache Hits ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

Support for Programming Languages and Operating Systems (ASPLOS). ACM,
283–300. https://doi.org/10.1145/3373376.3378468

[4] Mohammad Agbarya, Idan Yaniv, Jayneel Gandhi, and Dan Tsafrir. 2020. Predict-
ing Execution Times With Partial Simulations in Virtual Memory Research: Why
andHow. In Proc. Annual IEEE/ACM International Symposium onMicroarchitecture
(MICRO). IEEE Press, 456–470. https://doi.org/10.1109/MICRO50266.2020.00046

[5] Jeongseob Ahn, Seongwook Jin, and Jaehyuk Huh. 2012. Revisiting Hardware-
assisted Page Walks for Virtualized Systems. In Proc. International Symposium
on Computer Architecture (ISCA). 476–487. https://doi.org/10.1109/ISCA.2012.
6237041

[6] Sam Ainsworth and Timothy M. Jones. 2021. Compendia: Reducing Virtual-
Memory Costs via Selective Densification. In Proceedings of the 2021 ACM SIG-
PLAN International Symposium onMemoryManagement (ISMM 2021). Association
for Computing Machinery, New York, NY, USA, 52–65. https://doi.org/10.1145/
3459898.3463902

[7] Kursad Albayraktaroglu, Aamer Jaleel, Xue Wu, Manoj Franklin, Bruce Jacob,
Chau-Wen Tseng, and Donald Yeung. 2005. BioBench: A Benchmark Suite of
Bioinformatics Applications. In Proc. International Symposium on Performance
Analysis of Systems & Software (ISPASS). 2–9. https://doi.org/10.1109/ISPASS.
2005.1430554

[8] Chloe Alverti, Stratos Psomadakis, Vasileios Karakostas, Jayneel Gandhi, Kon-
stantinos Nikas, Georgios Goumas, and Nectarios Koziris. 2020. Enhancing
and Exploiting Contiguity for Fast Memory Virtualization. In Proc. International
Symposium on Computer Architecture (ISCA). IEEE. https://doi.org/10.1109/
ISCA45697.2020.00050

[9] AMD 2020. Software Optimization Guide for AMD Family 17h Models 30h and
Greater Processors. AMD.

[10] Andrea Arcangeli. 2010. Transparent Hugepage Support. In KVM Forum 2010.
https://www.linux-kvm.org/images/9/9e/2010-forum-thp.pdf

[11] Arm 2020. Arm Architecture Reference Manual Supplement: Memory System
Resource Partitioning and Monitoring (MPAM), for Armv8-A. Arm.

[12] Arm 2020. Arm Cortex-A76 Core Technical Reference Manual. Arm.
[13] Rachata Ausavarungnirun, VanceMiller, Joshua Landgraf, Saugata Ghose, Jayneel

Gandhi, Adwait Jog, Christopher J. Rossbach, and Onur Mutlu. 2018. MASK:
Redesigning the GPU Memory Hierarchy to Support Multi-Application Con-
currency. In Proc. Internationla Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS). ACM, 503–518. https:
//doi.org/10.1145/3173162.3173169

[14] Thomas W. Barr, Alan L. Cox, and Scott Rixner. 2010. Translation Caching:
Skip, Don’t Walk (the Page Table). In Proc. International Symposium on Computer
Architecture (ISCA). 48–59. https://doi.org/10.1145/1815961.1815970

[15] Thomas W. Barr, Alan L. Cox, and Scott Rixner. 2011. SpecTLB: A Mechanism for
Speculative Address Translation. In Proc. International Symposium on Computer
Architecture (ISCA). ACM, 307–318. https://doi.org/10.1145/2000064.2000101

[16] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and Michael M.
Swift. 2013. Efficient Virtual Memory for Big Memory Servers. In Proc. Interna-
tional Symposium on Computer Architecture (ISCA). 237–248. https://doi.org/10.
1145/2485922.2485943

[17] Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha Manne. 2008.
Accelerating Two-dimensional Page Walks for Virtualized Systems. In Proc. In-
ternationla Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). 26–35. https://doi.org/10.1145/1346281.1346286

[18] Abhishek Bhattacharjee. 2013. Large-Reach Memory Management Unit Caches.
In Proc. Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
ACM, 383–394. https://doi.org/10.1145/2540708.2540741

[19] Abhishek Bhattacharjee. 2017. Translation-Triggered Prefetching. In Proc. Inter-
nationla Conference on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS). ACM, 63–76. https://doi.org/10.1145/3037697.3037705

[20] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. ACM SIGARCH Computer
Architecture News 39, 2 (Aug. 2011), 1–7. https://doi.org/10.1145/2024716.2024718

[21] Guilherme Cox and Abhishek Bhattacharjee. 2017. Efficient Address Translation
for Architectures with Multiple Page Sizes. In Proc. Internationla Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS). ACM, 435–448. https://doi.org/10.1145/3037697.3037704

[22] Will Deacon. 2020. Virtualising for the Masses: Exposing KVM on
Android. https://mirrors.edge.kernel.org/pub/linux/kernel/people/will/slides/
kvmforum-2020-edited.pdf. In KVM Forum.

[23] Yu Du, Miao Zhou, Bruce R. Childers, Daniel Mossé, and Rami Melhem. 2015. Sup-
porting Superpages in Non-Contiguous Physical Memory. In Proc. International
Symposium on High-Performance Computer Architecture (HPCA). IEEE, 223–234.
https://doi.org/10.1109/HPCA.2015.7056035

[24] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
2008. LIBLINEAR: A Library for Large Linear Classification. J. Mach. Learn. Res.
9 (June 2008), 1871–1874. http://jmlr.org/papers/v9/fan08a.html

[25] Jayneel Gandhi, Arkaprava Basu, Mark D. Hill, and Michael M. Swift. 2014.
Efficient Memory Virtualization: Reducing Dimensionality of Nested Page Walks.
In Proc. Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE Press, 178–189. https://doi.org/10.1109/MICRO.2014.37

[26] Jayneel Gandhi, Mark D. Hill, andMichaelM. Swift. 2016. Agile Paging: Exceeding
the Best of Nested and Shadow Paging. In Proc. International Symposium on
Computer Architecture (ISCA). IEEE Press, 707–718. https://doi.org/10.1109/ISCA.
2016.67

[27] Faruk Guvenilir and Yale N. Patt. 2020. Tailored Page Sizes. In Proc. International
Symposium on Computer Architecture (ISCA). https://doi.org/10.1109/ISCA45697.
2020.00078

[28] John L. Henning. 2006. SPEC CPU2006 Benchmark Descriptions. ACM SIGARCH
Computer Architecture News 34, 4 (2006), 1–17. https://doi.org/10.1145/1186736.
1186737

[29] Intel 2008. TLBs, Paging-Structure Caches, and Their Invalidation. Intel.
[30] Intel 2016. Intel 64 and IA-32 Architectures Optimization Reference Manual. Intel.
[31] Intel 2017. 5-Level Paging and 5-Level EPT. Intel.
[32] Intel 2019. Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 3.

Intel.
[33] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar, Adrián Cristal, Mark D. Hill,

Kathryn S. McKinley, Mario Nemirovsky, Michael M. Swift, and Osman Ünsal.
2015. Redundant Memory Mappings for Fast Access to Large Memories. In
Proc. International Symposium on Computer Architecture (ISCA). 66–78. https:
//doi.org/10.1145/2749469.2749471

[34] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach, and Emmett
Witchel. 2016. Coordinated and Efficient Huge Page Management with Ingens.
In Proc. USENIX Conference on Operating Systems Design and Implementation
(OSDI). 705–721. https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/kwon

[35] Yashwant Marathe, Nagendra Gulur, Jee Ho Ryoo, Shuang Song, and Lizy K.
John. 2017. CSALT: Context Switch Aware Large TLB. In Proc. Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). ACM, 449–462. https:
//doi.org/10.1145/3123939.3124549

[36] Artemiy Margaritov, Dmitrii Ustiugov, Edouard Bugnion, and Boris Grot. 2019.
Prefetched Address Translation. In Proc. Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO). ACM, 1023–1036. https://doi.org/10.1145/
3352460.3358294

[37] Chandrashis Mazumdar, Prachatos Mitra, and Arkaprava Basu. 2021. Dead
Page and Dead Block Predictors: Cleaning TLBs and Caches Together. In Proc.
International Symposium on High-Performance Computer Architecture (HPCA).
IEEE Press, 507–519. https://doi.org/10.1109/HPCA51647.2021.00050

[38] Sparsh Mittal. 2017. A Survey of Techniques for Architecting TLBs. Concurrency
and Computation: Practice and Experience 29, 10 (2017), e4061. https://doi.org/10.
1002/cpe.4061

[39] Naveen Muralimanohar, Rajeev Balasubramonian, and Norm Jouppi. 2007. Op-
timizing NUCA Organizations and Wiring Alternatives for Large Caches with
CACTI 6.0. In Proc. Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO). IEEE Press, 3–14. https://doi.org/10.1109/MICRO.2007.33

[40] Lifeng Nai, Yinglong Xia, Ilie G. Tanase, Hyesoon Kim, and Ching-Yung Lin.
2015. GraphBIG: Understanding Graph Computing in the Context of Industrial
Solutions. In Proc. High Performance Computing, Networking, Storage and Analysis
(SC). https://doi.org/10.1145/2807591.2807626

[41] Ashish Panwar, Aravinda Prasad, and K. Gopinath. 2018. Making Huge Pages
Actually Useful. In Proc. Internationla Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). 679–692. https://doi.
org/10.1145/3173162.3173203

[42] Chang Hyun Park, Sanghoon Cha, Bokyeong Kim, Youngjin Kwon, David Black-
Schaffer, and Jaehyuk Huh. 2020. Perforated Page: Supporting Fragmented Mem-
ory Allocation for Large Pages. In Proc. International Symposium on Computer
Architecture (ISCA). IEEE Press. https://doi.org/10.1109/ISCA45697.2020.00079

[43] Chang Hyun Park, Taekyung Heo, and Jaehyuk Huh. 2016. Efficient Synonym
Filtering and Scalable Delayed Translation for Hybrid Virtual Caching. In Proc.
International Symposium on Computer Architecture (ISCA). 90–102. https://doi.
org/10.1109/ISCA.2016.18

[44] Chang Hyun Park, Taekyung Heo, Jungi Jeong, and Jaehyuk Huh. 2017. Hybrid
TLB Coalescing: Improving TLB Translation Coverage under Diverse Fragmented
Memory Allocations. In Proc. International Symposium on Computer Architecture
(ISCA). 444–456. https://doi.org/10.1145/3079856.3080217

[45] Binh Pham, Abhishek Bhattacharjee, Yasuko Eckert, and Gabriel H. Loh. 2014.
Increasing TLB Reach by Exploiting Clustering in Page Translations. In Proc.
International Symposium on High-Performance Computer Architecture (HPCA).
558–567. https://doi.org/10.1109/HPCA.2014.6835964

[46] Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel, and Abhishek Bhattachar-
jee. 2012. CoLT: Coalesced Large-Reach TLBs. In Proc. Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO). 258–269. https://doi.org/10.
1109/MICRO.2012.32

[47] Bin Pham, Ján Veselý, Gabriel H. Loh, and Abhishek Bhattacharjee. 2015. Large
Pages and Lightweight Memory Management in Virtualized Environments: Can

140

https://doi.org/10.1145/3373376.3378468
https://doi.org/10.1109/MICRO50266.2020.00046
https://doi.org/10.1109/ISCA.2012.6237041
https://doi.org/10.1109/ISCA.2012.6237041
https://doi.org/10.1145/3459898.3463902
https://doi.org/10.1145/3459898.3463902
https://doi.org/10.1109/ISPASS.2005.1430554
https://doi.org/10.1109/ISPASS.2005.1430554
https://doi.org/10.1109/ISCA45697.2020.00050
https://doi.org/10.1109/ISCA45697.2020.00050
https://www.linux-kvm.org/images/9/9e/2010-forum-thp.pdf
https://doi.org/10.1145/3173162.3173169
https://doi.org/10.1145/3173162.3173169
https://doi.org/10.1145/1815961.1815970
https://doi.org/10.1145/2000064.2000101
https://doi.org/10.1145/2485922.2485943
https://doi.org/10.1145/2485922.2485943
https://doi.org/10.1145/1346281.1346286
https://doi.org/10.1145/2540708.2540741
https://doi.org/10.1145/3037697.3037705
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/3037697.3037704
https://mirrors.edge.kernel.org/pub/linux/kernel/people/will/slides/kvmforum-2020-edited.pdf
https://mirrors.edge.kernel.org/pub/linux/kernel/people/will/slides/kvmforum-2020-edited.pdf
https://doi.org/10.1109/HPCA.2015.7056035
http://jmlr.org/papers/v9/fan08a.html
https://doi.org/10.1109/MICRO.2014.37
https://doi.org/10.1109/ISCA.2016.67
https://doi.org/10.1109/ISCA.2016.67
https://doi.org/10.1109/ISCA45697.2020.00078
https://doi.org/10.1109/ISCA45697.2020.00078
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/2749469.2749471
https://doi.org/10.1145/2749469.2749471
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kwon
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kwon
https://doi.org/10.1145/3123939.3124549
https://doi.org/10.1145/3123939.3124549
https://doi.org/10.1145/3352460.3358294
https://doi.org/10.1145/3352460.3358294
https://doi.org/10.1109/HPCA51647.2021.00050
https://doi.org/10.1002/cpe.4061
https://doi.org/10.1002/cpe.4061
https://doi.org/10.1109/MICRO.2007.33
https://doi.org/10.1145/2807591.2807626
https://doi.org/10.1145/3173162.3173203
https://doi.org/10.1145/3173162.3173203
https://doi.org/10.1109/ISCA45697.2020.00079
https://doi.org/10.1109/ISCA.2016.18
https://doi.org/10.1109/ISCA.2016.18
https://doi.org/10.1145/3079856.3080217
https://doi.org/10.1109/HPCA.2014.6835964
https://doi.org/10.1109/MICRO.2012.32
https://doi.org/10.1109/MICRO.2012.32

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Chang Hyun Park, Ilias Vougioukas, Andreas Sandberg, and David Black-Schaffer

You Have it Both Ways?. In Proc. Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 1–12. https://doi.org/10.1145/2830772.2830773

[48] Jee Ho Ryoo, Nagendra Gulur, Shuang Song, and Lizy K. John. 2017. Rethinking
TLB Designs in Virtualized Environments: A Very Large Part-of-Memory TLB.
In Proc. International Symposium on Computer Architecture (ISCA). ACM, New
York, NY, USA. https://doi.org/10.1145/3079856.3080210

[49] Dimitrios Skarlatos, Apostolos Kokolis, Tianyin Xu, and Josep Torrellas. 2020.
Elastic Cuckoo Page Tables: Rethinking Virtual Memory Translation for Paral-
lelism. In Proc. Internationla Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). https://doi.org/10.1145/3373376.
3378493

[50] John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz. 2014. XS-
Bench - The Development and Verification of a Performance Abstraction for
Monte Carlo Reactor Analysis. In PHYSOR 2014 - The Role of Reactor Physics toward
a Sustainable Future. Kyoto. https://www.mcs.anl.gov/papers/P5064-0114.pdf

[51] Stephan van Schaik, Kaveh Razavi, Ben Gras, Herbert Bos, and Cristiano Giuffrida.
2017. Reverse Engineering Hardware Page Table Caches Using Side-Channel Attacks
on the MMU. Technical Report. Vrije Universiteit Amsterdam.

[52] Idan Yaniv and Dan Tsafrir. 2016. Hash, Don’t Cache (the Page Table). In Proc.
ACM SIGMETRICS International Conference on Measurement and Modeling of
Computer Science (SIGMETRICS). https://doi.org/10.1145/2964791.2901456

[53] Lixin Zhang, Evan Speight, Ram Rajamony, and Jiang Lin. 2010. Enigma: Ar-
chitectural and Operating System Support for Reducing the Impact of Address
Translation. In Proc. International Conference on Supercomputing (ICS). ACM,
159–168. https://doi.org/10.1145/1810085.1810109

[54] Weixi Zhu, Alan L. Cox, and Scott Rixner. 2020. A Comprehensive Analysis
of Superpage Management Mechanisms and Policies. In Proc. USENIX Annual
Technical Conference (USENIX ATC). USENIX Association, 829–842. https://www.
usenix.org/conference/atc20/presentation/zhu-weixi

141

https://doi.org/10.1145/2830772.2830773
https://doi.org/10.1145/3079856.3080210
https://doi.org/10.1145/3373376.3378493
https://doi.org/10.1145/3373376.3378493
https://www.mcs.anl.gov/papers/P5064-0114.pdf
https://doi.org/10.1145/2964791.2901456
https://doi.org/10.1145/1810085.1810109
https://www.usenix.org/conference/atc20/presentation/zhu-weixi
https://www.usenix.org/conference/atc20/presentation/zhu-weixi

	Abstract
	1 Introduction
	2 Related Work
	3 Flattening the Page Table
	3.1 Conventional Page Tables
	3.2 Flattening the Page Table
	3.3 Page Walk Caches
	3.4 Supporting Large Data Pages
	3.5 Accessing Recursively Mapped Page Tables
	3.6 Implications for Five-Level Page Tables

	4 Flattening and Virtualization
	4.1 Effective Memory Accesses per Page Walk

	5 Cache Prioritization
	6 Implementation
	6.1 Hardware Changes
	6.2 Software Changes

	7 Evaluation
	7.1 Non-virtualized Execution
	7.2 Virtualized Executions
	7.3 Dynamic Energy
	7.4 Case Study: Flattening for Mobile Systems
	7.5 Flattening Other Levels

	8 Conclusion
	Acknowledgments
	References

